Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






The Manufacturing Process

Salt

Background

Salt is the common name for the substance sodium chloride (NaCI), which occurs in the form of transparent cubic crystals. Although salt is most familiar as a food supplement, less than 5% of the salt produced in the United States is used for that purpose. About 70% is used in the chemical industry, mostly as a source of chlorine. Salt is also used for countless other purposes, such as removing snow and ice from roads, softening water, preserving food, and stabilizing soils for construction.

The earliest humans obtained their salt from natural salt concentrations, called licks, and from meat. Those people who lived near the ocean may have also obtained it by chewing seaweed or from the natural evaporation of small pools of seawater. Meat became a more important source of salt as hunting was developed, as did milk when sheep, goats, horses, camels, reindeer, and cattle were domesticated. Even today, certain peoples—such as the Inuit of the far north, the Bedouin of the Middle Eastern deserts, and the Masai of east Africa—use no other form of salt.

As agriculture developed, leading to an increased population and a diet consisting mostly of plants, it became necessary to devise ways of obtaining salt in greater amounts. The earliest method of salt production was the evaporation of seawater by the heat of the sun. This method was particularly suited to hot, arid regions near the ocean or near salty lakes and is still used in those areas. Solar evaporation was soon followed by the quarrying of exposed masses of rock salt, which quickly developed into the mining of underground deposits of salt. Two thousand years ago the Chinese began using wells to reach underground pools of salt water, some of which were more than 0.6 miles (1.0 km) deep.

In areas where the climate did not allow solar evaporation, salt water was poured on burning wood or heated rocks to boil it. The salt left behind was then scraped off. During the time of the Roman empire, shallow lead pans were used to boil salt water over open fires. In the Middle Ages these were replaced with ironpans which were heated with coal. In the 1860s a procedure known as the Michigan process or the grainer process was invented, in which salt water was heated by steam running through pipes immersed in the water. This process is still used to produce certain types of salt. By the late 1880s open pans were replaced by a series of closed pans, in a device known as a multiple-effect vacuum evaporator, which had been used in the sugar industry for about 50 years.

Today the United States is the world's largest producer of salt, followed by China, Russia, Germany, the United Kingdom, India, and France.

Raw Materials

Salt is obtained from two sources: rock salt and brine. Rock salt is simply crystallized salt, also known as halite. It is the result of the evaporation of ancient oceans millions of years ago. Large deposits of rock salt are found in the United States, Canada, Germany, eastern Europe, and China. Sometimes pressure from deep inside the Earth forces up large masses of rock salt to form salt domes. In the United States, salt domes are found along the Gulf Coast of Texas and Louisiana.



Brine is water containing a high concentration of salt. The most obvious source of brine is the ocean, but it can also be obtained from salty lakes such as the Dead Sea and from underground pools of salt water. Large deposits of brine are found in Austria, France, Germany, India, the United States, and the United Kingdom. Brine may also be artificially produced by dissolving mined rock salt or by pumping water into wells drilled into rock salt.

Natural brines always contain other substances dissolved along with salt. The most' common of these are magnesium chloride, magnesium sulfate, calcium sulfate, potassium chloride, magnesium bromide, and calcium carbonate. These substances may be as commercially valuable as the salt itself. Rock salt may be quite pure, or it may contain various amounts of these substances along with rocky impurities such as shale and quartz.

For table salt, however, additives are usually mixed in. Most table salt is iodized in order to provide the trace element iodine to the diet. This helps to prevent goiter, a disease of the thyroid gland. To supply iodine, a small amount of potassium iodide is added. Table salt also contains a small amount of various chemicals used to keep the salt from absorbing water and caking. These chemicals include magnesium carbonate, calcium silicate, calcium phosphate, magnesium silicate, and calcium carbonate.

The Manufacturing Process


Date: 2016-01-14; view: 680


<== previous page | next page ==>
Karakter, Hewan, Kegiatan Lain | Processing rock salt
doclecture.net - lectures - 2014-2025 year. Copyright infringement or personal data (0.006 sec.)