Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






Metabolism and the early atmosphere

Metabolism – the rate at which energy and material resources are taken up from the environment, transformed within an organism, and allocated to maintenance, growth and reproduction – is a fundamental physiological trait.

Ernst et al.[176]:991

The Earth formed approximately 4.5 billion years ago[177] and environmental conditions were too extreme for life to form for the first 500 million years. During this early Hadean period, the Earth started to cool, allowing a crust and oceans to form. Environmental conditions were unsuitable for the origins of life for the first billion years after the Earth formed. The Earth's atmosphere transformed from being dominated by hydrogen, to one composed mostly of methane and ammonia. Over the next billion years the metabolic activity of life transformed the atmosphere to higher concentrations of carbon dioxide, nitrogen, and water vapor. These gases changed the way that light from the sun hit the Earth's surface and greenhouse effects trapped heat. There were untapped sources of free energy within the mixture of reducing and oxidizing gasses that set the stage for primitive ecosystems to evolve and, in turn, the atmosphere also evolved.[178]

The leaf is the primary site of photosynthesis in most plants.

Throughout history, the Earth's atmosphere and biogeochemical cycles have been in a dynamic equilibrium with planetary ecosystems. The history is characterized by periods of significant transformation followed by millions of years of stability.[179] The evolution of the earliest organisms, likely anaerobic methanogen microbes, started the process by converting atmospheric hydrogen into methane (4H2 + CO2 → CH4 + 2H2O). Anoxygenic photosynthesis converting hydrogen sulfide into other sulfur compounds or water (for example 2H2S + CO2 + hv → CH2O + H2O + 2S), as occurs in deep sea hydrothermal vents today, reduced hydrogen concentrations and increased atmospheric methane. Early forms of fermentation also increased levels of atmospheric methane. The transition to an oxygen dominant atmosphere (the Great Oxidation) did not begin until approximately 2.4-2.3 billion years ago, but photosynthetic processes started 0.3 to 1 billion years prior.[179][180]

Radiation: heat, temperature and light

The biology of life operates within a certain range of temperatures. Heat is a form of energy that regulates temperature. Heat affects growth rates, activity, behavior and primary production. Temperature is largely dependent on the incidence of solar radiation. The latitudinal and longitudinal spatial variation of temperature greatly affects climates and consequently the distribution of biodiversity and levels of primary production in different ecosystems or biomes across the planet. Heat and temperature relate importantly to metabolic activity. Poikilotherms, for example, have a body temperature that is largely regulated and dependent on the temperature of the external environment. In contrast, homeotherms regulate their internal body temperature by expending metabolic energy.[120][121][167]



There is a relationship between light, primary production, and ecological energy budgets. Sunlight is the primary input of energy into the planet's ecosystems. Light is composed of electromagnetic energy of different wavelengths. Radiant energy from the sun generates heat, provides photons of light measured as active energy in the chemical reactions of life, and also acts as a catalyst for genetic mutation.[120][121][167] Plants, algae, and some bacteria absorb light and assimilate the energy through photosynthesis. Organisms capable of assimilating energy by photosynthesis or through inorganic fixation of H2S are autotrophs. Autotrophs—responsible for primary production—assimilate light energy that becomes metabolically stored as potential energy in the form of biochemical enthalpic bonds.[120][121][167]


Date: 2016-01-03; view: 1885


<== previous page | next page ==>
Relation to evolution | Physical environments
doclecture.net - lectures - 2014-2024 year. Copyright infringement or personal data (0.006 sec.)