|   CATEGORIES: BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism | INTEGRAL CALCULUS
 Problem 1. Find indefinite integrals 
 
 
 Problem 2. Calculate definite integrals 
 
 Problem 3. 1. Find the area bounded by the curve  2. Find the area of the ellipse  3. Find the area bounded by the curve  4. Find the area of the lemniscate  5. Find the length of the cissoid  6. Find the area bounded by the parabola  7. Find the area bounded by the ellipse  8. Find the area of the ellipse whose parametric equations are  9. Find the parabola  10. Find the area bounded by the parabola  11. Find the bounded area between the curves  12. Find the area of an arch of the cycloid  13. Find the area of the cardioid  14. Find the area of one loop of the curve  15. Find the area between the curve  16. Sketch the graph  17. Sketch the graph  18. Find the area in the first quadrant between the graph of  19. Find the circumference of a circle of radius R. 20. Find the entire length of the hypocycloid  21. Find the volume of the solid generated by revolving about the x-axis the area bounded by the curve  22. Find the volume of the solid generated by revolving about the line y=8 the area bounded by the curve  23. The area bounded by the curve xy=1 and the lines x=1, x=3 and y=0 is evolved about the x-axis. Find the volume generated. 24. The smaller segment cut from the circle  25. Find the volume generated by revolving about the line y=x the area bounded by the line  26. The area bounded by the hyperbola  27. Find the volume generated by revolving about the line x=2, the area bounded by the parabola  28. Find the area of the surface generated by revolving the curve  29. Find the area of the surface generated by revolving the curve  30. Find the area of the surface generated by revolving an arch of the cycloid  
 
 REFERENCES: 
 1. Atkinson, K.E. (1993), Elementary Numerical Analysis, 2nd ed., John Wiley (New York). 2. Blachman, N. (1999), Mathematica : a Practical Approach, 2nd ed., Prentice Hall (Upper Saddle River, N.J). 3. Bracewell, R.N. (1986), The Fourier Transform and Its Applications, 2nd ed., McGraw-Hill (New York). 4. Edwards, C.H., Penney, D.E. (1998), Calculus with Analytic Geometry, 5th ed., Prentice Hall (Upper Saddle River, N.J). 5. Efimov N.V. «A short course of analytical geometry». M. 1967. 6. Franklin, J.N. (1968), Matrix Theory, Prentice-Hall (Englewood Cliffs, NJ). 7. Gerald, C.F. (1999), Applied Numerical Analysis, 6th ed., Addison-Wesley (Cambridge, MA). 8. Golub, G.H. (1996), Matrix Computations, 3rd ed., Johns Hopkins University Press (Baltimore). 9. Greenberg, M.D. (1998), Advanced Engineering Mathematics, 2nd ed., Prentice Hall (Upper Saddle River, N.J). 10. Gusak A.A. (1983, 1984), «Higher Mathematics. Tutorial», Minsk. Vol.1, 2. 11. Gusak A.A. (1988), «Problems and exercises in higher mathematics», Minsk.V 1, 2. 12. Hildebrand, F.B. (1974), Introduction to Numerical Analysis, 2nd ed., McGraw-Hill (New York). 13. Hildebrand, F.B. (1976), Advanced Calculus for Applications, 2nd ed., Prentice-Hall (Englewood Cliffs, NJ). 14. Kreyszig, E. (1999), Advanced Engineering Mathematics, 8th ed., John Wiley (New York). 15. Minorsky V.P. (1987), «Problems in higher mathematics». M. Science. 16. Olver, F.W.J. (1974), Asymptotics and Special Functions, Academic Press (New York). 17. O'Neil, P.V. (1995), Advanced Engineering Mathematics, 4th ed., PWS-Kent Pub. (Boston). 18. Piskunov N.S. (1985), «The differential and integral calculus». M. Vol 1, 2. 19. Privalov N. N. (1964), «Analytic geometry», M. 20. Spiegel, M.R. (ed.) (1968), Mathematical Handbook of Formulas and Tables, McGraw-Hill (New York). 21. Shipachev V.S. (2001), «Higher Mathematics», M. 22. Stoer, J., Bulirsch , R. (1993), Introduction to Numerical Analysis, 2nd ed., Springer-Verlag (New York). 23. Strang, G. (1988), Linear Algebra and Its Applications, 3rd ed., Harcourt, Brace, Jovanovich (San Diego). 24. Strang, G. (1991), Calculus, Wellesley-Cambridge Press (Wellesley, MA). 25. Strang, G. (1998), Introduction to Linear Algebra, Wellesley-Cambridge Press (Wellesley, MA). 26. Wang, Z.X. (1989), Special Functions, World Scientific (Singapore). 27. Watson, G.N. (1944), A Treatise on the Theory of Bessel Functions, 2nd ed., Macmillan (New York). 28. Wolfram, S. (1999), The Mathematica Book, 4th ed., Cambridge Univ. Press (New York). 29. Wylie, C.R. (1995), Advanced Engineering Mathematics, 6th ed., McGraw-Hill (New York). 30. Zwillinger, D. (ed.) (1996), CRC Standard Mathematical Tables and Formulae, 30th ed., CRC Press (Bocs Ration, FL). 
 
 Date: 2015-01-02; view: 1060 
 |