Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






Production by electrons

Photoelectric absorption

The probability of a photoelectric absorption per unit mass is approximately proportional to Z3/E3, where Z is the atomic number and E is the energy of the incident photon.[11] This rule is not valid close to inner shell electron binding energies where there are abrupt changes in interaction probability, so called absorption edges. However, the general trend of high absorption coefficients and thus short penetration depths for low photon energies and high atomic numbers is very strong. For soft tissue photoabsorption dominates up to about 26 keV photon energy where Compton scattering takes over. For higher atomic number substances this limit is higher. The high amount of calcium (Z=20) in bones together with their high density is what makes them show up so clearly on medical radiographs.

A photoabsorbed photon transfers all its energy to the electron with which it interacts, thus ionizing the atom to which the electron was bound and producing a photoelectron that is likely to ionize more atoms in its path. An outer electron will fill the vacant electron position and produce either a characteristic photon or anAuger electron. These effects can be used for elemental detection through X-ray spectroscopy or Auger electron spectroscopy.

Compton scattering

Compton scattering is the predominant interaction between X-rays and soft tissue in medical imaging.[12] Compton scattering is an inelastic scattering of the X-ray photon by an outer shell electron. Part of the energy of the photon is transferred to the scattering electron, thereby ionizing the atom and increasing the wavelength of the X-ray. The scattered photon can go in any direction, but a direction similar to the original direction is a bit more likely, especially for high-energy X-rays. The probability for different scattering angles are described by the Klein–Nishina formula. The transferred energy can be directly obtained from the scattering angle from the conservation of energy and momentum.

Rayleigh scattering

Rayleigh scattering is the dominant elastic scattering mechanism in the X-ray regime.[13] Inelastic forward scattering gives rise to the refractive index, which for X-rays is only slightly below 1.[14]

Production

Whenever charged particles (electrons or ions) of sufficient energy hit a material, x-rays are produced.

Production by electrons

Characteristic X-ray emission lines for some common anode materials.[15][16]  
Anode material Atomic number Photon energy [keV] Wavelength [nm]  
Kα1 Kβ1 Kα1 Kβ1  
W 59.3 67.2 0.0209 0.0184  
Mo 17.5 19.6 0.0709 0.0632  
Cu 8.05 8.91 0.157 0.139  
Ag 22.2 24.9 0.0559 0.0497  
Ga 9.25 10.26 0.134 0.121  
In 24.2 27.3 0.0512 0.455  



Spectrum of the X-rays emitted by an X-ray tube with a rhodium target, operated at 60 kV. The smooth, continuous curve is due tobremsstrahlung, and the spikes arecharacteristic K lines for rhodium atoms.

X-rays can be generated by an X-ray tube, a vacuum tube that uses a high voltage to accelerate the electrons released by a hot cathode to a high velocity. The high velocity electrons collide with a metal target, the anode, creating the X-rays.[17] In medical X-ray tubes the target is usuallytungsten or a more crack-resistant alloy of rhenium (5%) and tungsten (95%), but sometimesmolybdenum for more specialized applications, such as when softer X-rays are needed as in mammography. In crystallography, a copper target is most common, with cobalt often being used when fluorescence from iron content in the sample might otherwise present a problem.

The maximum energy of the produced X-ray photon is limited by the energy of the incident electron, which is equal to the voltage on the tube times the electron charge, so an 80 kV tube cannot create X-rays with an energy greater than 80 keV. When the electrons hit the target, X-rays are created by two different atomic processes:

1. Characteristic X-ray emission: If the electron has enough energy it can knock an orbital electron out of the inner electron shell of a metal atom, and as a result electrons from higher energy levels then fill up the vacancy and X-ray photons are emitted. This process produces an emission spectrum of X-rays at a few discrete frequencies, sometimes referred to as the spectral lines. The spectral lines generated depend on the target (anode) element used and thus are called characteristic lines. Usually these are transitions from upper shells into K shell (called K lines), into L shell (called L lines) and so on.

2. Bremsstrahlung: This is radiation given off by the electrons as they are scattered by the strong electric field near the high-Z (proton number) nuclei. These X-rays have a continuous spectrum. The intensity of the X-rays increases linearly with decreasing frequency, from zero at the energy of the incident electrons, the voltage on the X-ray tube.

So the resulting output of a tube consists of a continuous bremsstrahlung spectrum falling off to zero at the tube voltage, plus several spikes at the characteristic lines. The voltages used in diagnostic X-ray tubes range from roughly 20 to 150 kV and thus the highest energies of the X-ray photons range from roughly 20 to 150 keV.[18]

Both of these X-ray production processes are inefficient, with a production efficiency of only about one percent, and thus most of the electric power consumed by the tube is released as waste heat. When producing a usable flux of X-rays, the X-ray tube must be designed to dissipate the excess heat.

Short nanosecond bursts of X-rays peaking at 15-keV in energy may be reliably produced by peeling pressure-sensitive adhesive tape from its backing in a moderate vacuum. This is likely to be the result of recombination of electrical charges produced by triboelectric charging. The intensity of X-ray triboluminescence is sufficient for it to be used as a source for X-ray imaging.[19] Using sources considerably more advanced than sticky tape, at least one startup firm is exploiting tribocharging in the development of highly portable, ultra-miniaturized X-ray devices.[20]

A specialized source of X-rays which is becoming widely used in research is synchrotron radiation, which is generated by particle accelerators. Its unique features are X-ray outputs many orders of magnitude greater than those of X-ray tubes, wide X-ray spectra, excellent collimation, and linear polarization.[21]


Date: 2015-12-24; view: 694


<== previous page | next page ==>
WYMIANA KARTY POBYTU | Production by fast positive ions
doclecture.net - lectures - 2014-2022 year. Copyright infringement or personal data (0.001 sec.)