Thus for any vehicle power P, the thrust that may be provided is:
Example
Suppose we want to send a 10,000 kg space probe to Mars. The required Δv from LEO is approximately 3000 m/s, using a Hohmann transfer orbit. For the sake of argument, let us say that the following thrusters may be used:
* - assumes a specific power of 1kW/kg
Observe that the more fuel-efficient engines can use far less fuel; its mass is almost negligible (relative to the mass of the payload and the engine itself) for some of the engines. However, note also that these require a large total amount of energy. For Earth launch, engines require a thrust to weight ratio of more than one. To do this with the ion or more theoretical electrical drives, the engine would have to be supplied with one to several gigawatts of power — equivalent to a major metropolitan generating station. From the table it can be seen that this is clearly impractical with current power sources.
Alternative approaches include some forms of laser propulsion, where the reaction mass does not provide the energy required to accelerate it, with the energy instead being provided from an external laser or other beamed power system. Small models of some of these concepts have flown, although the engineering problems are complex and the ground based power systems are not a solved problem.
Instead, a much smaller, less powerful generator may be included which will take much longer to generate the total energy needed. This lower power is only sufficient to accelerate a tiny amount of fuel per second, and would be insufficient for launching from the Earth. However, over long periods in orbit where there is no friction, the velocity will be finally achieved. For example, it took the SMART-1more than a year to reach the Moon, while with a chemical rocket it takes a few days. Because the ion drive needs much less fuel, the total launched mass is usually lower, which typically results in a lower overall cost, but takes longer.
Mission planning therefore frequently involves adjusting and choosing the propulsion system so as to minimise the total cost of the project, and can involve trading off launch costs and mission duration against payload fraction.
Rocket engines
Most rocket engines are internal combustion heat engines (although non combusting forms exist). Rocket engines generally produce a high temperature reaction mass, as a hot gas. This is achieved by combusting a solid, liquid or gaseous fuel with an oxidiser within a combustion chamber. The extremely hot gas is then allowed to escape through a high-expansion ratio nozzle. This bell-shaped nozzle is what gives a rocket engine its characteristic shape. The effect of the nozzle is to dramatically accelerate the mass, converting most of the thermal energy into kinetic energy. Exhaust speed reaching as high as 10 times the speed of sound at sea level are common.
Rocket engines provide essentially the highest specific powers and high specific thrusts of any engine used for spacecraft propulsion.
Ion propulsion rockets can heat a plasma or charged gas inside a magnetic bottle and release it via a magnetic nozzle, so that no solid matter need come in contact with the plasma. Of course, the machinery to do this is complex, but research into nuclear fusion has developed methods, some of which have been proposed to be used in propulsion systems, and some have been tested in a lab.
See rocket engine for a listing of various kinds of rocket engines using different heating methods, including chemical, electrical, solar, and nuclear.