Temperature, in physics, property of systems that determines whether they are in thermal equilibrium (see Thermodynamics). The concept of temperature stems from the idea of measuring relative hotness and coldness and from the observation that the addition of heat to a body leads to an increase in temperature as long as no melting or boiling occurs. In the case of two bodies at different temperatures, heat will flow from the hotter to the colder until their temperatures are identical and thermal equilibrium is reached (see Heat Transfer). Thus, temperatures and heat, although interrelated, refer to different concepts, temperature being a property of a body and heat being an energy flow to or from a body by virtue of a temperature difference. See Energy.
Temperature changes have to be measured in terms of other property changes of a substance. Thus, the conventional mercury thermometer measures the expansion of a mercury column in a glass capillary, the change in length of the column being related to the temperature change. If heat is added to an ideal gas contained in a constant-volume vessel, the pressure increases, and the temperature change can be determined from the pressure change by Gay-Lussac's law (see Gases), provided the temperature is expressed on the absolute scale.
II
TEMPERATURE SCALES
One of the earliest temperature scales was that devised by the German physicist Gabriel Daniel Fahrenheit. According to this scale, at standard atmospheric pressure, the freezing point (and melting point of ice) is 32° F, and the boiling point is 212° F. The centigrade, or Celsius scale, invented by the Swedish astronomer Anders Celsius, and used throughout most of the world, assigns a value of 0° C to the freezing point and 100° C to the boiling point. In scientific work, the absolute or Kelvin scale, invented by the British mathematician and physicist William Thomson, 1st Baron Kelvin, is most widely used. In this scale, absolute zero is at -273.16° C, which is zero K, and the degree intervals are identical to those measured on the Celsius scale (see Absolute Zero). The corresponding “absolute Fahrenheit” or Rankine scale, devised by the British engineer and physicist William J. M. Rankine, places absolute zero at -459.69° F, which is 0° R, and the freezing point at 491.69° R. A more consistent scientific temperature scale, based on the Kelvin scale, was adopted in 1933.
III
EFFECTS OF TEMPERATURE
Temperature plays an important part in determining the conditions in which living matter can exist. Thus, birds and mammals demand a very narrow range of body temperatures for survival and must be protected against extreme heat or cold. Aquatic species can exist only within a narrow temperature range of the water, which differs for various species. Thus, for example, the increase in temperature of river water by only a few degrees as a result of heat discharged from power plants may kill most of the native fish.
The properties of all materials are also markedly affected by temperature changes. At arctic temperatures, for example, steel becomes very brittle and breaks easily, and liquids either solidify or become very viscous, offering high frictional resistance to flow. At temperatures near absolute zero, many materials exhibit strikingly different characteristics. At high temperatures, solid materials liquefy or become gaseous; chemical compounds may break up into their constituents.
The temperature of the atmosphere is greatly influenced by both the land and the sea areas. In January, for example, the great landmasses of the northern hemisphere are much colder than the oceans at the same latitude, and in July the situation is reversed. At low elevations the air temperature is also determined largely by the surface temperature of the earth. The periodic temperature changes are due mainly to the sun's radiant heating of the land areas of the earth, which in turn convect heat to the overlying air. As a result of this phenomenon, the temperature decreases with altitude, from a standard reference value of 15.5° C (60° F) at sea level (in temperate latitudes), to about -55° C (about -67° F) at about 11,000 m (about 36,000 ft). Above this altitude, the temperature remains nearly constant up to about 33,500 m (about 110,000 ft).
Machine Tools
I
INTRODUCTION
Machine Tools, stationary power-driven machines used to shape or form solid materials, especially metals. The shaping is accomplished by removing material from a workpiece or by pressing it into the desired shape. Machine tools form the basis of modern industry and are used either directly or indirectly in the manufacture of machine and tool parts.
Machine tools may be classified under three main categories: conventional chip-making machine tools, presses, and unconventional machine tools. Conventional chip-making tools shape the workpiece by cutting away the unwanted portion in the form of chips. Presses employ a number of different shaping processes, including shearing, pressing, or drawing (elongating). Unconventional machine tools employ light, electrical, chemical, and sonic energy; superheated gases; and high-energy particle beams to shape the exotic materials and alloys that have been developed to meet the needs of modern technology.
II
HISTORY
Modern machine tools date from about 1775, when the English inventor John Wilkinson constructed a horizontal boring machine for producing internal cylindrical surfaces. About 1794 Henry Maudslay developed the first engine lathe. Later, Joseph Whitworth speeded the wider use of Wilkinson's and Maudslay's machine tools by developing, in 1830, measuring instruments accurate to a millionth of an inch. His work was of great value because precise methods of measurement were necessary for the subsequent mass production of articles having interchangeable parts.
The earliest attempts to manufacture interchangeable parts occurred almost simultaneously in Europe and the United States. These efforts relied on the use of so-called filing jigs, with which parts could be hand-filed to substantially identical dimensions. The first true mass-production system was created by the American inventor Eli Whitney, who in 1798 obtained a contract with the U.S. government to produce 10,000 army muskets, all with interchangeable parts.
During the 19th century, such standard machine tools as lathes, shapers, planers, grinders, and saws and milling, drilling, and boring machines reached a fairly high degree of precision, and their use became widespread in the industrializing nations. During the early part of the 20th century, machine tools were enlarged and made even more accurate. After 1920 they became more specialized in their applications. From about 1930 to 1950 more powerful and rigid machine tools were built to utilize effectively the greatly improved cutting materials that had become available. These specialized machine tools made it possible to manufacture standardized products very economically, using relatively unskilled labor. The machines lacked flexibility, however, and they were not adaptable to a variety of products or to variations in manufacturing standards. As a result, in the past three decades engineers have developed highly versatile and accurate machine tools that have been adapted to computer control, making possible the economical manufacture of products of complex design. Such tools are now widely used.
III
CONVENTIONAL MACHINE TOOLS
Lathe, Milling Machine, Planer, and Shaper
A selection of basic machine tools shows a variety of functions and methods of crafting a workpiece. The job at hand usually determines which tool will be used. For instance, a person making a rounded handle would use a lathe, while a person making a breadboard would use a planer. In order to use power tools efficiently and safely, either the workpiece or the actual tool must be stationary. A planer is an example of a stationary machine tool because the workpiece is moved, or fed, into it. To use the shaper, the workpiece must be kept stationary while the tool is moved across it.
Among the basic machine tools are the lathe, the shaper, the planer, and the milling machine. Auxiliary to these are drilling and boring machines, grinders, saws, and various metal-forming machines.
A
Lathe
A lathe, the oldest and most common type of turning machine, holds and rotates metal or wood while a cutting tool shapes the material. The tool may be moved parallel to or across the direction of rotation to form parts that have a cylindrical or conical shape or to cut threads. With special attachments, a lathe may also be used to produce flat surfaces, as a milling machine does, or it may drill or bore holes in the workpiece.
B
Shaper
The shaper is used primarily to produce flat surfaces. The tool slides against the stationary workpiece and cuts on one stroke, returns to its starting position, and then cuts on the next stroke after a slight lateral displacement. In general, the shaper can produce almost any surface composed of straight-line elements. It uses a single-point tool and is relatively slow, because it depends on reciprocating (alternating forward and return) strokes. For this reason, the shaper is seldom found on a production line. It is, however, valuable for tool and die rooms and for job shops where flexibility is essential and relative slowness is unimportant because few identical pieces are being made.
C
Planer
The planer is the largest of the reciprocating machine tools. Unlike the shaper, which moves a tool past a fixed workpiece, the planer moves the workpiece past a fixed tool. After each reciprocating cycle, the workpiece is advanced laterally to expose a new section to the tool. Like the shaper, the planer is intended to produce vertical, horizontal, or diagonal cuts. It is also possible to mount several tools at one time in any or all tool holders of a planer to execute multiple simultaneous cuts.
D
Milling Machine
In a milling machine, a workpiece is fed against a circular device with a series of cutting edges on its circumference. The workpiece is held on a table that controls the feed against the cutter. The table conventionally has three possible movements: longitudinal, horizontal, and vertical; in some cases it can also rotate. Milling machines are the most versatile of all machine tools. Flat or contoured surfaces may be machined with excellent finish and accuracy. Angles, slots, gear teeth, and recess cuts can be made by using various cutters.
E
Drilling and Boring Machines
Some Conventional Machine Tools
Conventional machine tools prepare workpieces for further fitting and use. Drills, grinders, punch presses, surface grinders, and boring machines are used extensively in industry. Particularly useful in large-scale production, these power tools produce uniform holes and smooth surfaces far faster and more accurately than they could be produced by hand.
Hole-making machine tools are used to drill a hole where none previously existed; to alter a hole in accordance with some specification (by boring or reaming to enlarge it, or by tapping to cut threads for a screw); or to lap or hone a hole to create an accurate size or a smooth finish.
Drilling machines vary in size and function, ranging from portable drills to radial drilling machines, multispindle units, automatic production machines, and deep-hole-drilling machines. See Drill.
Boring is a process that enlarges holes previously drilled, usually with a rotating single-point cutter held on a boring bar and fed against a stationary workpiece. Boring machines include jig borers and vertical and horizontal boring mills.
F
Grinders
Grinding is the removal of metal by a rotating abrasive wheel; the action is similar to that of a milling cutter. The wheel is composed of many small grains of abrasive, bonded together, with each grain acting as a miniature cutting tool. The process produces extremely smooth and accurate finishes. Because only a small amount of material is removed at each pass of the wheel, grinding machines require fine wheel regulation. The pressure of the wheel against the workpiece can be made very slight, so that grinding can be carried out on fragile materials that cannot be machined by other conventional devices. See Grinding and Polishing.
G
Saws
Commonly used power-driven saws are classified into three general types, according to the kind of motion used in the cutting action: reciprocating, circular, and band-sawing machines. They generally consist of a bed or frame, a vise for clamping the workpiece, a feed mechanism, and the saw blade.
H
Cutting Tools and Fluids
Because cutting processes involve high local stresses, frictions, and considerable heat generation, cutting-tool material must combine strength, toughness, hardness, and wear resistance at elevated temperatures. These requirements are met in varying degrees by such cutting-tool materials as carbon steels (steel containing 1 to 1.2 percent carbon), high-speed steels (iron alloys containing tungsten, chromium, vanadium, and carbon), tungsten carbide, and diamonds and by such recently developed materials as ceramic, carbide ceramic, and aluminum oxide.
In many cutting operations fluids are used to cool and lubricate. Cooling increases tool life and helps to stabilize the size of the finished part. Lubrication reduces friction, thus decreasing the heat generated and the power required for a given cut. Cutting fluids include water-based solutions, chemically inactive oils, and synthetic fluids.
I
Presses
Presses shape workpieces without cutting away material, that is, without making chips. A press consists of a frame supporting a stationary bed, a ram, a power source, and a mechanism that moves the ram in line with or at right angles to the bed. Presses are equipped with dies (see Die) and punches designed for such operations as forming, punching, and shearing. Presses are capable of rapid production because the operation time is that needed for only one stroke of the ram.
IV
UNCONVENTIONAL MACHINE TOOLS
Unconventional machine tools include plasma-arc, laser-beam, electrodischarge, electrochemical, ultrasonic, and electron-beam machines. These machine tools were developed primarily to shape the ultrahard alloys used in heavy industry and in aerospace applications and to shape and etch the ultrathin materials used in such electronic devices as microprocessors.
A
Plasma Arc
Plasma-arc machining (PAM) employs a high-velocity jet of high-temperature gas (see Plasma) to melt and displace material in its path. The materials cut by PAM are generally those that are difficult to cut by any other means, such as stainless steels and aluminum alloys.
B
Laser
Laser-beam machining (LBM) is accomplished by precisely manipulating a beam of coherent light (see Laser) to vaporize unwanted material. LBM is particularly suited to making accurately placed holes. The LBM process can make holes in refractory metals and ceramics and in very thin materials without warping the workpiece. Extremely fine wires can also be welded using LBM equipment.
C
Electrodischarge
Electrodischarge machining (EDM), also known as spark erosion, employs electrical energy to remove metal from the workpiece without touching it. A pulsating high- frequency electric current is applied between the tool point and the workpiece, causing sparks to jump the gap and vaporize small areas of the workpiece. Because no cutting forces are involved, light, delicate operations can be performed on thin workpieces. EDM can produce shapes unobtainable by any conventional machining process.
D
Electrochemical
Electrochemical machining (ECM) also uses electrical energy to remove material. An electrolytic cell is created in an electrolyte medium, with the tool as the cathode and the workpiece as the anode. A high-amperage, low-voltage current is used to dissolve the metal and to remove it from the workpiece, which must be electrically conductive. A wide variety of operations can be performed by ECM; these operations include etching, marking, hole making, and milling.
E
Ultrasonic
Ultrasonic machining (USM) employs high-frequency, low-amplitude vibrations to create holes and other cavities. A relatively soft tool is shaped as desired and vibrated against the workpiece while a mixture of fine abrasive and water flows between them. The friction of the abrasive particles gradually cuts the workpiece. Materials such as hardened steel, carbides, rubies, quartz, diamonds, and glass can easily be machined by USM.
F
Electron Beam
In electron-beam machining (EBM), electrons are accelerated to a velocity nearly three-fourths that of light. The process is performed in a vacuum chamber to reduce the scattering of electrons by gas molecules in the atmosphere. The stream of electrons is directed against a precisely limited area of the workpiece; on impact, the kinetic energy of the electrons is converted into thermal energy that melts and vaporizes the material to be removed, forming holes or cuts. EBM equipment is commonly used by the electronics industry to aid in the etching of circuits in microprocessors. See Microprocessor.