![]() CATEGORIES: BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism |
Parallel to the axis ОУ.Coincides with the axis ОУ. Passes through the origin coordinates. Вопрос № 74 How is located the straight Ах+Ву+С=0, if A=C=0: coincides with the axis ОХ. Parallel to the axis ОУ. Parallel to the axis ОХ. Coincides with the axis ОУ. Passes through the origin coordinates. Вопрос № 75 How is located the straight Ах+Ву+С=0, if B=C=0: Coincides with the axis ОУ. Coincides with the axis ОХ. Parallel to the axis ОУ. Parallel to the axis ОХ. Passes through the origin coordinates. Вопрос № 76 Transpose is the matrix when: permutation rows and columns. permutation two rows. permutation two columns. Multiplication of all the matrix elements on the number. Summation two matrixes. Вопрос № 77 Sho the formula derivative function y=arccosx: Вопрос № 78 Product of matrixes А*Е equals: A. E. –A. –E. A2. Вопрос № 79 Compute and determine the 3rd order: -12. 12. 0. 10. -10. Вопрос № 80 Find the matrix Х, that satisfy the fellow conditions: 2А+Х=В where: А=
Вопрос № 81 Coordinate of the point М (х; у), divides the segment АВ with endpoints A(х1; у1) and B(х2; у2) on
у-у1=k(х-х1).
Вопрос № 82 Area of a triangle with vertices, А(-2; -4) , В(2; 8), С(10; 2) : 60 square units. 50 sq. un. 40 sq. un. 30 sq. un. 20 sq. un. Вопрос № 83 Expression of the polar coordinates of the point M in rectangular coordinates:
Вопрос № 84 Expression of the polar coordinates of the point M in rectangular coordinates:
Вопрос № 85 The general equation of second degree: Ax2+Bхy+Cу2=+Dx+Ey+F=0. Ax+By+C=0. у=kx+b. Вопрос № 86 The equation of a circumference with center at point C (a; b) and radius r: (х-а)2+(у-b)2=r2. Ax+By+C=0. у=kx+b. Вопрос № 87 The equation of a circumference with center at point C (0, 0) and radius r: х2+у2=r2. у=kx+b. (х-а)2+(у-b)2=r2. Вопрос № 88 The equation of the circumference if center of the circle coincides with the origin coordinates: х2+у2=r2. у=kx+b. (х-а)2+(у-b)2=r2. Вопрос № 89 The equation of a circumference with center at C (2, -4) and radius 5: (х-2)2+(у+4)2=25. х2+у2=25. у=kx+b. (х-а)2+(у-b)2=r2. Вопрос № 90 The equation of a circumference centered at point C (0, 0) and a radius of 4: х2+у2=16. у=kx+b. (х-а)2+(у-b)2=r2. Вопрос № 91 Compute and determine the 2nd order: -2. 10. -10. 2. 0. Вопрос № 92 Compute and determine the 2nd order: 8. -8. -120. 0. 1. Вопрос № 93 Compute an determine the 3rd order: 29. -29. 27. 20. 2. Вопрос № 94 Compute and determine the 3rd order: 0. 1. -1. 2. -2. Вопрос № 95 Find the sum of the matrixes 0. Вопрос № 96 Compute the multiplication of the matrixes АВ, if А= Вопрос № 97 Find matrix А+2В, if А= Вопрос № 98 Find matrix 3А-В, if А= Вопрос № 99 Find matrix А+2В, if А= Вопрос № 100 Compute the multiplication of the matrix АВ, if А= Вопрос № 101 Solve the system of equalization: (-7; 5). (-7; -5). (7; 0). (5; 7). (0; 1). Вопрос № 102 Compute and determine the 3rd order: 0. 1. -1. -2. 2. Вопрос № 103 Compute and determine the 3rd order: 1. 0. -1. 3. -3. Вопрос № 104 Compute and determine the 2rd order: 2. -1. 1. 0. -2. Вопрос № 105 Compute and determine the 2rd order: 1. -9. 9. -1. 0. Вопрос № 106 Compute the multiplication of the matrixes АВ, if А= Вопрос № 107 Compute the multiplication of the matrixes АВ, if А= Вопрос № 108 Find matrix А+В, if А= Вопрос № 109 Find matrix А-В, if А= Вопрос № 110 Compute and determine the 3rd order: -5. -1. 5. 1. 0. Вопрос № 111 If А= Вопрос № 112 if (х0, у0)- the solution of system linear equalization then х0 - у0 equal: -7,5. 0,5.
7,5. -0,5. 0. Вопрос № 113 Find which the identity matrix is: Е= Е= Е= Е= Е= Вопрос № 114 Matrix size: (3x3). (4x3). (3x4). (3x2). (2x3). Вопрос № 115 Operations on matrices: addition, multiplication by the number, the product. addition, multiplication by the number. multiplication by the number, the product. the product. addition. Вопрос № 116 Determine the order of the determinant: 2-order. 1-order. 4-order 6-order n-order. Вопрос № 117 Square matrix: Вопрос № 118 Calculate determine the 3rd order: 0. 2. 6. 5. -1. Вопрос № 119 Find the product matrix on the number of: 4 Вопрос № 120 Search matrix А*В: А= 0. 2. -1. 1. 5.
Вопрос № 121 Search matrix Вопрос № 122 Calculate determine the 3rd order: 0. -2. 5. -10. 10. Вопрос № 123 Calculate determine the 3rd order: 0. -12. -10. 10. -1. Вопрос № 124 Calculate determine the 3rd order: 0. 64. -64. -1. 1. Вопрос № 125 Search matrix А+В if А= Вопрос № 126 Formula Cramer:
Вопрос № 127 Calculate determine the 2-th order: 1. -1. 0. 2. -2. Вопрос № 128 Determine the order of the determinant: n-order. 1-order. 2-order. 3-order. 4-order. Вопрос № 129 To multiply matrix Each element of the matrix multiplied by the number of Each element of the first row of the matrix multiplied by the number of Each element of the first column of the matrix multiplied by the number Each element of the second column of the matrix multiplied by the number of Each element of the column and row of the matrix multiplied by the number Вопрос № 130 Calculate the determinant of the matrix -1 -50 Вопрос № 131 Dimension of matrices: mxn. mxm. nxn. nx1. m=1. Вопрос № 132 The order of the determinant, consisting of n-elements: 3-порядка. n –порядка. 4-порядка. 6-порядка. 5-порядка. Вопрос № 133 An additional determinant of the system: Вопрос № 134 If you multiply this matrix by a unit matrix, we obtain: this matrix. identity matrix. zero matrix. square matrix. inverse matrix. Вопрос № 135 Formula for calculating the determinant of second order:
Вопрос № 136 If the items are below the main diagonal are zero, then the square matrix is called: triangular. diagonal. unit and square. square. unit. Вопрос № 137 An additional determinant Вопрос № 138 Methods for solving systems of linear equations: Kramer, Gauss-Jordan. Sarryusa and Kronecker - Capelli. Cauchy problem. Sarryusa. Kronecker - Capelli. Вопрос № 139 B as a matrix of four laboratory feeding birds in two different types of food: Вопрос № 140 Short name of the matrix:
Вопрос № 141 Elements of the matrix form: columns and rows. lines and diagonals. diagonal. columns. line. Вопрос № 142 Matrix vector - a string. vector - column. vector - a line and vector - the column. the diagonal. vector. Вопрос № 143 Matrix vector - column. vector - a string. vector - a line and vector - the column. the diagonal. vector. Вопрос № 144 Key containing two identical columns: is zero. is 1. is equal to -1. is 12. is 15. Вопрос № 145 Additional determinant Вопрос № 146 Key to containing two proportional columns: is zero. equal to -2. is 1. equal to -5. is 5. Вопрос № 147 If one of the rows of the determinant consists of zeros, the determinant: is zero. is -1. is 1. is 5. is equal to -6. Вопрос № 148 Determination of the identity matrix: diagonal elements are composed of units of the remaining zeros. elements of the first line consists of all ones. elementy first column consist of all ones. all elements are equal to unity. matrix consisting of one row or one column. Вопрос № 149 What condition is required to add two matrices: the same dimension matrices. the various dimensions of matrices. the number of rows of the first matrix equals the number of columns of the second matrix. the number of columns of the first matrix equals the number of rows of the second matrix. diagonal elements are the same. Вопрос № 150 What condition must be fulfilled for the multiplication of two matrices: number of columns of the first matrix equals the number of rows of the second matrix. the same diagonal elements. the same dimensions. the number of columns are equal. the number of rows are equal. Вопрос № 151 In which case the system of equations is called homogeneous: all the free terms are equal to zero. free terms different numbers. at least one of the free terms equal to zero. at least one of the free terms equal to unity. all free members are equal to unity. Вопрос № 152 Find a matrix A*B if Вопрос № 153 Find a matrix A*B if Вопрос № 154 Solve the system of equations: (2;-5). (1;6). (8;1). (-5;2). (1;0). Вопрос № 155 Calculate to determine the 2-nd order: (a+b)(c+k)-(b+k)(a+c). (a+k)(c-b). ck+ab. ab. ac. Вопрос № 156 Calculate to determine the 2-nd order: 0. -18. 2. 4. 5. Вопрос № 157 Calculate the determinant of the matrix: 44. 18. 0. 52. 16. Вопрос № 158 Calculate the determinant of the matrix: 50. 16. -50. 70. 0. Вопрос № 159 Calculate the determinant of the matrix: -1. 0. 50. 16. -50. Вопрос № 160 Find a matrix Вопрос № 161 Calculate determine the 3rd order: 40. 1. 65. 0. -40. Вопрос № 162 Calculate determine the 3rd order: -5. 5. 1. 0. 10. Вопрос № 163 Calculate determine the 3rd order: 16. 8. 1. 48. 17. Вопрос № 164 Solve the system of equations: (5;-1). (0;1). (-1;5). (1;1). (8;3). Вопрос № 165 Solve the system of equations: (1;1;1). (1;1;-1). (1;0;1). (-1;1;-1). (1;2;1). Вопрос № 166 Solve the system of equations: (-3;2;-1). (-3;2;0). (-3;6;-1). (-3;4;-1). (3;2;1). Вопрос № 167 Solve the system of equations: (-1;-2;4). (-1;0;3). (-1;-9;4). (-1;-5;4). (0;-2;4). Вопрос № 168 Solve the system of equations: (1;2;3). (-1;2;3). (1;2;-3). (1;5;3). (1;2;0). Вопрос № 169 If the matrix Вопрос № 170 If the matrix Вопрос № 171 Matrix product Вопрос № 172 Calculate the determinant 2. -1. 1. 5 . 6. Вопрос № 173 Calculate the determinant 6. -6. 5. 2. 3. Вопрос № 174 Calculate the determinant 2. -2. 3. 1. -1. Вопрос № 175 Calculate the determinant 6. -2. 3. 1. -1. Вопрос № 176 In which case the determinant does not change if interchange rows and columns with the same number if you rearrange the columns if you multiply the determinant to zero if you rearrange the rows and columns with different numbers if you multiply the determinant by one Вопрос № 177 An additional determinant of is obtained by substituting the second column of free terms. obtained by substituting the first column of free terms. obtained by substituting the third column of free terms. obtained by multiplying the determinant to zero. obtained by multiplying the determinant of one. Вопрос № 178 What is the number of rows of the matrix? m=1. n=0. m=0. m=n. n=1. Вопрос № 179 If the determinant of the system is different from zero, then the solution of the system: is unique. x=0 y=0. no solutions y=0.5 non solution Вопрос № 180 Elements the main diagonal: А11А22А33 А33А23 А11 А32А23 А21 А21А32А33 А32А23 А11 . Вопрос № 181 An additional determinant of the system Вопрос № 182 Solution of the system x1=1, x2=-2. x1=-1, x2=2. x1=-2, x2=1. x1=-1, x2=0. x1=1, x2=0. Вопрос № 183 Solution of the system x1=3, x2=-1. x1=-1, x2=3. x1=1, x2=3. x1=-3, x2=1. x1=-1, x2=2. Вопрос № 184 Solution of the system x1=2, x2=-3. x1=-2, x2=3. x1=-3, x2=2. x1=-3, x2=1. x1=3, x2=0. Вопрос № 185 Solution of the system x1=3, x2=-5. x1=-5, x2=2. x1=-5, x2=-3. x1=5, x2=-3. x1=-3, x2=5. Вопрос № 186 Solution of the system No solution. (-8;4;3). (8;-4;3). (-2;1;0). (-2;-1;0). Вопрос № 187 Solution of the system (-1;1;0). No solution. (-8;4;3) (8;-4;3). (-2;-1;0). Вопрос № 188 Solution of the system (2;2;2). (-2;2;1). No solution. (-2;1;0). (-2;2;0). Вопрос № 189 Solution of the system (4;3;2;0). No solution. (-2;3;2;3). (0;2;1;3). (-2;2;0;1). Вопрос № 190 A square matrix A n-th order is called degenerate if: detA=0. detA detA=1. detA=-1. detA=A*/A-1. Вопрос № 191 The sum of matrices A + B, if Вопрос № 192 Disposition of straight Ах+Ву+С=0, if В=0, С parallel to axis ОХ; axis ОХ; parallel to axis ОУ; axis ОУ; passes through the origin coordinates. Вопрос № 193 Angular coefficient of the straight 2,5у-5х+5=0: 2; 2,5; -2; -2,5; 5; Вопрос № 194 Disposition of stright Ах+Ву+С=0, если А=0, С parallel to axis ОХ; axis ОХ; parallel to axis ОУ; axis ОУ; passes through the origin coordinates; Вопрос № 195 А(2; -3) and В(4;3). Coordinates of the point, divides the interval АВ in two: (3;0). (2; -3). (4; 3). (-2; 3). (6; -3). Вопрос № 196 Equalization of parabola, that symmetrical relative to the axis coordinates: Вопрос № 197 Equalization of parabola, symmetrical relatively to axis of abscissas: Вопрос № 198 Equalization of parabola directrix: Вопрос № 199 Size of р parabola is calling: Parameter. Ordinate. Abscissa. Focus. Directrix. Вопрос № 200 Coordinates of focus F parabola:
Date: 2015-12-11; view: 1380
|