Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






Parallel to axis .

9

Solve the system if equations:

(-4; 2; -1).

(4; -2; 1).

(4; -1; 2).

(0; 2; 1).

(-1; 2; 0).

10

Compute and determine the 2nd order:

17.

-18.

0.

10.

-10.

11

The equation of a circumference of radius R = 5 with center at the origin:

2+2=25.

2+2=16.

=kx+b.

(-)2+(-b)2=r2.

12

The equation of a circumference of radius R = 7 with the coordinates of the center: the abscissa a = 3, the ordinate b=-2:

(-3)2+(+2)2=49.

2+2=16.

=kx+b.

(-)2+(-b)2=r2.

2+2=25.

13

The point of intersection of the circumference (-4)2+2=25:

(0; 3)

(-2; -4).

(-2; -4).

(0; -4).

(0; 0).

14

Coordinates of a center and radius R of the circumference (-2)2+(+4)2=25:

(2;-4); R=5.

(0; 0); R=5.

(2;-4); R=25.

(2;4); R=25.

(-2;4); R=5.

15

Coordinates of a center and radius of the circumference 2+2-25=0:

(0; 0); R=5.

(2;-4); R=5.

(2;-4); R=25.

(2;4); R=25.

(-2;4); R=5.

16

Show the equation of circumference, where the center is situated in point (2;-3) and circumference passes through the point (5;1):

(-2)2+(+3)2=25.

2+2=16.

=kx+b.

(-)2+(-b)2=r2.

(-3)2+(+2)2=49.

17

The distance between centers of the circumferences 2+2=16 and (+3)2+(+4)2=25:

5.

4.

3.

25.

16.

18

Abscissa of the circumferences point 2+(+4)2=41 and the point on it with ordinate equals zero:

5.

4.

3.

25.

16.

19

The curve, specified by equalization (-)2+(-b)2=r2:

Circumference.

Parabola.

Ellipse.

Hyperbola.

Straight line.

20

Ordinate of the circumferences point (+3)2+2=25, where abscissa equals zero:

4.

5.

3.

25.

16.

21

A canonical equalization of the ellipse:

(-)2+(-b)2=r2.

=kx+b.

2+2=16.

22

The curve, set by the equalization :

Ellipse.

Circumference.

Parabola.

Hyperbola.

Straight line.

23

The point of intersection the hyperbola 2-42=16 with the axis of abscissas:

( 4; 0).

( -5; 1).

( 5; 0).

( 6; 0).

( 7; 0).

24

Coordinates the point , hyperbola 2-92=16 with the ordinate, equals 1:

( 5; 1).

( 4; 0).

( 5; 5).

( 0; 0).

( 5; 25).

25

Canonical type of hyperbola 642-252=1600:

26

Canonical type of the ellipse 92+252=225:

27

Equalizations of asymptotes of the hyperbola :

, c>a.

, c<a.

.

.

28

Equalizations of asymptotes of the hyperbola :

.

.

, c<a.

, c<a.

.

29

Describe the distance d from origin coordinates to point (;):

;

;

;

;

;

30

The distance d from origin coordinates to point (-3; 4):

5;

25;

1;

-7;

-12;

31

The distance between two points 1(1;1) 2(2;2):

32



The distance between two points 1(8; 3) 2(0; -3):

10.

0.

11.

100.

-11.

33

Length of the cutoff with the coordinates (1;1) and (2;2):

34

Length of the cutoff with the coordinates (2; 4) (5;8):

5;

25;

1;

-7;

-12;

35

A triangle set by the coordinates of its apices (1; 1), (4;1), (1;5). Length of the side equals:

3;

25;

1;

-7;

-12;

36

Coordinates of the intervals midpoint , (1;1)and (2;2):

.

.

.

.

.

37

Coordinates of the intervals midpoint , (1;-1) (5;9):

(3; 4).

(1;-1).

(5; 9).

(3; 4).

(6; 8).

38

A rectangle prescribed by coordinates of its apices (1; 1), (3;1), (1;5). Coordinates of the egs midpoint :

(2; 1), N(2;3), P(1;3).

(1; 1), N(2;3), P(1;5).

(2; 2), N(3;3), P(1;3).

(1; 1), N(2;3), P(1;3).

(2; 1), N(3;1), P(1;5).

39

A rectangle prescribed by coordinates of its apices (1; 1), (8;-5), (3;5).Point the midpoint of the leg . Length of the median equals:

10;

6;

7;

8;

9;

40

Disposition of straight ++=0, if =0, 0:

parallel to axis ;

axis ;

parallel to axis ;

axis ;

passes through the origin coordinates.

41

Angular coefficient of the straight 2,5-5+5=0:

2;

2,5;

-2;

-2,5;

5;

42

Disposition of stright ++=0, =0, 0:

parallel to axis ;

axis ;

parallel to axis ;

axis ;

passes through the origin coordinates;

43

(2; -3) and (4;3). Coordinates of the point, divides the interval in two:

(3;0).

(2; -3).

(4; 3).

(-2; 3).

(6; -3).

44

Equalization of parabola, that symmetrical relative to the axis coordinates:

45

Equalization of parabola, symmetrical relatively to axis of abscissas:

46

Equalization of parabola directrix:

47

Size of parabola is calling:

Parameter.

Ordinate.

Abscissa.

Focus.

Directrix.

48

Coordinates of focus F parabola:

49

Coordinates of focus F parabola :

50

Equalization of directrix parabola :

51

Canonical equalization of hyperbola, where =5, =8:

52

Canonical equalization of ellipse, if =7, b=5:

53

Canonical equalization, and distance between the focuses equal 8 and small axle b=3:

54

Canonical equalization of ellipse, where large axle =6 , concentricity. =0,5:

55

What the dimension of matrix =, if (m x k), (k x n):

(m x n).

(k x n).

(n x m).

(m x k).

(n x n).

56

What the dimension of matrix =, if (2 x 3), (3 x 4):

(2 x 4).

(2 x 3).

(2 x 2).

(3 x 4).

(4 x 3).

57

What the dimension of matrix =, if (3 x 4), (4 x 1):

(3 x 1).

(3 x 4).

(4 x 4).

(3 x 3).

(1 x 3).

58

What the dimension of matrix =, if (2 x 4), (4 x 2):

(2 x 2).

(4 x 2).

(2 x 8).

(2 x 4).

(4 x 4).

59

Find an element 23 matrix =, if , :

10.

5.

-10.

-5.

-9.

60

Find an element 12 matrix =, if , :

-5.

5 .

10.

-10.

-9.

61

Find an element 33 matrix =, if , :

2.

-5.

-10.

10.

5.

62

If the determiner square matrix equals zero, she called:

Singular.

Nonsingular.

Unit.

Inverse.

Diagonal.

63

If the determiner if square matrix is not equal zero, she called:

Singular.

Nonsingular.

Unit.

Inverse.

Diagonal.

64

The system of linear equalizations is calling compatible, if:

it has only one solution.

it has at least one solution.

It doesnt have a solution.

The solutions consist from the whole numbers.

The solutions only positive numbers.

65

n unknown quantity, m quantity of the equalization of the system. What kind of condition contribute application the Kramers rule?

m = n.

m £ n.

m ³ n .

m < n.

m > n.

66

Coordinates of focus F parabola :

67

If the equalization system doesnt have solution, then the system is calling:

Incompatible .

Compatible.

Determinate.

Heterogeneous.

Homogeneous.

68

If in the Kramers method D=0, D¹0, then a system:

Incompatible .

Compatible.

Determinate.

Heterogeneous.

Homogeneous.

69

How is located the straight ++=0, if =0, ¹0:

Parallel to axis .

Axis .

Parallel to axis .

Axis .

Passes through the origin coordinates.

70

Formula of the calculus of the distance from point (1,1) to the straight ++=0:

71

In what meanings and these straights -2-1=0, 6-4-=0 are parallel:

=3, 2.

=2, =2.

=3, =2.

= -3, 2.

=6, 6.

72

In what meanings and these straights = +2, = 5 - are parallel:

= 5, -2.

= -1/5, -2.

= -1/5, = -2.

= -5, = -2.

5, = -2.

73

How is located the straight ++=0, if A=0

Parallel to the axis .

Coincides with the axis .


Date: 2015-12-11; view: 606


<== previous page | next page ==>
 | Parallel to the axis .
doclecture.net - lectures - 2014-2019 year. Copyright infringement or personal data (0.014 sec.)