Harvard University years
After spending a year 1946–1947 at the University of Illinois, Zariski became professor at Harvard University in 1947 where he remained until his retirement in 1969. In 1945, he fruitfully discussed foundational matters for algebraic geometry with André Weil. Weil's interest was in putting an abstract variety theory in place, to support the use of the Jacobian variety in his proof of the Riemann hypothesis for curves over finite fields, a direction rather oblique to Zariski's interests. The two sets of foundations weren't reconciled at that point.
At Harvard, Zariski's students included Shreeram Abhyankar, Heisuke Hironaka, David Mumford, Michael Artin and Steven Kleiman — thus spanning the main areas of advance in singularity theory, moduli theory and cohomology in the next generation. Zariski himself worked on equisingularity theory. Some of his major results, Zariski's main theorem and the Zariski theorem on holomorphic functions, were amongst the results generalized and included in the programme of Alexander Grothendieck that ultimately unified algebraic geometry.
Zariski proposed the first example of a Zariski surface in 1958. In algebraic geometry, a branch of mathematics, a Zariski surface is a surface over a field of characteristic p > 0 such that there is a dominant inseparable map of degree p from the projective plane to the surface. In particular, all Zariski surfaces are unirational. They were named by Piotr Blass after Oscar Zariski who used them in 1958 to give examples of unirational surfaces in characteristic p > 0 that are not rational. (In characteristic 0 by contrast, Castelnuovo's theorem implies that all unirational surfaces are rational.) Zariski surfaces are birational to surfaces in affine 3-space A3 defined by irreducible polynomials of the form zp=f(x,y).
The following problem posed by Oscar Zariski in 1971 is still open: let p ≥ 5, let S be a Zariski surface with vanishing geometric genus. Is S necessarily a rational surface?
Date: 2015-01-12; view: 900
|