A cellular network or mobile network is a wireless network distributed over land areas called cells, each served by at least one fixed-location transceiver, known as a cell site or base station. In a cellular network, each cell uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed bandwidth within each cell.
When joined together these cells provide radio coverage over a wide geographic area. This enables a large number of portable transceivers (e.g., mobile phones, etc.) to communicate with each other and with fixed transceivers and telephones anywhere in the network, via base stations, even if some of the transceivers are moving through more than one cell during transmission.
Cellular networks offer a number of desirable features:
1) More capacity than a single large transmitter, since the same frequency can be used for multiple links as long as they are in different cells.
2) Mobile devices use less power than with a single transmitter or satellite since the cell towers are closer.
3) Larger coverage area than a single terrestrial transmitter, since additional cell towers can be added indefinitely and are not limited by the horizon.
Major telecommunications providers have deployed voice and data cellular networks over most of the inhabited land area of the Earth. This allows mobile phones and mobile computing devices to be connected to the public switched telephone network and public Internet. Private cellular networks can be used for researchor for large organizations and fleets, such as dispatch for local public safety agencies or a taxicab company.
In a cellular radio system, a land area to be supplied with radio service is divided into regular shaped cells, which can be hexagonal, square, circular or some other regular shapes, although hexagonal cells are conventional. Each of these cells is assigned with multiple frequencies (f1–f6) which have corresponding radio base stations. The group of frequencies can be reused in other cells, provided that the same frequencies are not reused in adjacent neighboring cells as that would cause co-channel interference.
The increased capacity in a cellular network, compared with a network with a single transmitter, comes from the mobile communication switching system developed by Amos Joel of Bell Labs. That permitted multiple callers in the same area to use the same frequency by switching calls made using the same frequency to the nearest available cellular tower having that frequency available and from the fact that the same radio frequency can be reused in a different area for a completely different transmission. If there is a single plain transmitter, only one transmission can be used on any given frequency. Unfortunately, there is inevitably some level of interference from the signal from the other cells, which use the same frequency. This means that, in a standard FDMA system, there must be at least a one-cell gap between cells, which reuse the same frequency.
In the simple case of the taxi company, each radio had a manually operated channel selector knob to tune to different frequencies. As the drivers moved around, they would change from channel to channel. The drivers knew which frequency covered approximately what area. When they did not receive a signal from the transmitter, they would try other channels until they found one that worked. The taxi drivers would only speak one at a time, when invited by the base station operator (this is, in a sense, time division multiple access (TDMA)).
To distinguish signals from several different transmitters, frequency division multiple access (FDMA) and code division multiple access (CDMA) were developed.
With FDMA, the transmitting and receiving frequencies used in each cell are different from the frequencies used in each neighboring cell. In a simple taxi system, the taxi driver manually tuned to a frequency of a chosen cell to obtain a strong signal and to avoid interference from signals from other cells.
The principle of CDMA is more complex, but achieves the same result; the distributed transceivers can select one cell and listen to it.
Other available methods of multiplexing such as polarization division multiple access (PDMA) and time division multiple access (TDMA) cannot be used to separate signals from one cell to the next since the effects of both vary with position and this would make signal separation practically impossible. Time division multiple access, however, is used in combination with either FDMA or CDMA in a number of systems to give multiple channels within the coverage area of a single cell.
The most common example of a cellular network is a mobile phone (cell phone) network. A mobile phone is a portable telephone which receives or makes calls through a cell site (base station), or transmitting tower. Radio waves are used to transfer signals to and from the cell phone.
Modern mobile phone networks use cells because radio frequencies are a limited, shared resource. Cell-sites and handsets change frequency under computer control and use low power transmitters so that the usually limited number of radio frequencies can be simultaneously used by many callers with less interference.
A cellular network is used by the mobile phone operator to achieve both coverage and capacity for their subscribers. Large geographic areas are split into smaller cells to avoid line-of-sight signal loss and to support a large number of active phones in that area. All of the cell sites are connected to telephone exchanges (or switches), which in turn connect to the public telephone network.
In cities, each cell site may have a range of up to approximately 1⁄2 mile (0.80 km), while in rural areas, the range could be as much as 5 miles (8.0 km). It is possible that in clear open areas, a user may receive signals from a cell site 25 miles (40 km) away.
Since almost all mobile phones use cellular technology, including GSM, CDMA, and AMPS (analog), the term "cell phone" is in some regions, notably the US, used interchangeably with "mobile phone". However, satellite phones are mobile phones that do not communicate directly with a ground-based cellular tower, but may do so indirectly by way of a satellite.
5.2 Complete the vocabulary (term) log, i.e. find out definition, part of speech, translation, synonyms and antonyms if possible, decode abbreviations.
Grammar
5.3 Rewrite each question in indirect speech.
1) “What time does the film start, Peter?” I asked ______________________.
2) “Do you watch television every evening, Chris?” The interviewer asked _______________________.
3) “Why did you apply for the job?” asked the sales manager. The sales manager asked __________________________________.
4) “Are you taking much money with you to France?” My bank manager wanted to know _________________________________.
5) “When will I know the results of the examination?” Maria asked the examiner ______________________________________ .
6) “Are you enjoying your flight?” The flight attendant asked me __________.
7) “How does the photocopier work?” I asked the salesman _______________.
8) “Have you ever been to Japan, Paul?” Sue asked Paul ________________.