No sooner had humans perfected their stride than the next pivotal event in human evolution—the dramatic enlargement of the brain—began. According to the fossil record, the australopithecines never became much brainier than living apes, showing only a modest increase in brain size, from around 400 cubic centimeters four million years ago to 500 cubic centimeters two million years later. Homo brain sizes, in contrast, ballooned from 600 cubic centimeters in H. habilis some two million years ago up to 900 cubic centimeters in early H. erectus just 300,000 years later. The H. erectus brain did not attain modern human proportions (1,350 cubic centimeters on average), but it exceeded that of living nonhuman primates.
From a nutritional perspective, what is extraordinary about our large brain is how much energy it consumes—roughly 16 times as much as muscle tissue per unit weight. We therefore use a much greater share of our daily energy budget to feed our voracious brains. In fact, at rest brain metabolism accounts for a whopping 20 to 25 percent of an adult human’s energy needs—far more than the 8 to 10 percent observed in nonhuman primates, and more still than the 3 to 5 percent allotted to the brain by other mammals.
How did such an energetically costly brain evolve? One theory, developed by Dean Falk of Florida State University, holds that bipedalism enabled hominids to cool their cranial blood, thereby freeing the heat-sensitive brain of the temperature constraints that had kept its size in check. I suspect that, as with bipedalism, a number of selective factors were probably at work. But brain expansion almost certainly could not have occurred until hominids adopted a diet sufficiently rich in calories and nutrients to meet the associated costs.
Comparative studies of living animals support that assertion. Across all primates, species with bigger brains dine on richer foods, and humans are the extreme example of this correlation, boasting the largest relative brain size and the choicest diet. According to recent analyses by Loren Cordain of Colorado State University, contemporary hunter-gatherers derive, on average, 40 to 60 percent of their dietary energy from animal foods (meat, milk and other products). Modern chimps, in comparison, obtain only 5 to 7 percent of their calories from these comestibles. Animal foods are far denser in calories and nutrients than most plant foods. It stands to reason, then, that for early Homo, acquiring more gray matter meant seeking out more of the energy-dense fare.
Fossils, too, indicate that improvements to dietary quality accompanied evolutionary brain growth. All australopithecines had skeletal and dental features built for processing tough, low-quality plant foods. The later, robust australopithecines—a dead-end branch of the human family tree that lived alongside members of our own genus—had especially pronounced adaptations for grinding up fibrous plant foods, including massive, dish-shaped faces; heavily built mandibles; ridges, or sagittal crests, atop the skull for the attachment of powerful chewing muscles; and huge, thickly enameled molar teeth. (This is not to say that australopithecines never ate meat. They almost certainly did on occasion, just as chimps do today.) In contrast, early members of the genus Homo, which descended from the gracile australopithecines, had much smaller faces, more delicate jaws, smaller molars and no sagittal crests—despite being far larger in terms of overall body size than their predecessors. Together these features suggest that early Homo was consuming less plant material and more animal foods.
As to what prompted Homo’s initial shift toward the higher-quality diet necessary for brain growth, environmental change appears to have once more set the stage for evolutionary change. The continued desiccation of the African landscape limited the amount and variety of edible plant foods available to hominids. Those on the line leading to the robust australopithecines coped with this problem morphologically, evolving anatomical specializations that enabled them to subsist on more widely available, difficult to chew foods. Homo took a different path. As it turns out, the spread of grasslands also led to an increase in the relative abundance of grazing mammals such as antelope and gazelle, creating opportunities for hominids capable of exploiting them. H. erectus did just that, developing the first hunting-and-gathering economy in which game animals became a significant part of the diet and resources were shared among members of the foraging groups. Signs of this behavioral revolution are visible in the archaeological record, which shows an increase in animal bones at hominid sites during this period, along with evidence that the beasts were butchered using stone tools.
These changes in diet and foraging behavior did not turn our ancestors into strict carnivores; however, the addition of modest amounts of animal foods to the menu, combined with the sharing of resources that is typical of hunter-gatherer groups, would have significantly increased the quality and stability of hominid diets. Improved dietary quality alone cannot explain why hominid brains grew, but it appears to have played a critical role in enabling that change. After the initial spurt in brain growth, diet and brain expansion probably interacted synergistically: bigger brains produced more complex social behavior, which led to further shifts in foraging tactics and improved diet, which in turn fostered additional brain evolution.
A Movable Feast
The evolution of H. erectus in Africa 1.8 million years ago also marked a third turning point in human evolution: the initial movement of hominids out of Africa. Until recently, the locations and ages of known fossil sites suggested that early Homo stayed put for a few hundred thousand years before venturing out of the motherland and slowly fanning out into the rest of the Old World. Earlier work hinted that improvements in tool technology around 1.4 million years ago—namely, the advent of the Acheulean hand ax—allowed hominids to leave Africa. But new discoveries indicate that H. erectus hit the ground running, so to speak. Rutgers University geochronologist Carl Swisher III and his colleagues have shown that the earliest H. erectus sites outside of Africa, which are in Indonesia and the Republic of Georgia, date to between 1.8 million and 1.7 million years ago. It seems that the first appearance of H. erectus and its initial spread from Africa were almost simultaneous.
The impetus behind this newfound wanderlust again appears to be food. What an animal eats dictates to a large extent how much territory it needs to survive. Carnivorous animals generally require far bigger home ranges than do herbivores of comparable size because they have fewer total calories available to them per unit area. Large-bodied and increasingly dependent on animal foods, H. erectus most likely needed much more turf than the smaller, more vegetarian australopithecines did. Exactly how far beyond the continent that shift would have taken H. erectus remains unclear, but migrating animal herds may have helped lead it to these distant lands.
Modern Quandaries
Just as pressures to improve dietary quality influenced early human evolution, so, too, have these factors played a crucial role in the more recent increases in population size. Innovations such as cooking, agriculture and even aspects of modern food technology can all be considered tactics for boosting the quality of the human diet. Cooking, for one, augmented the energy available in wild plant foods. With the advent of agriculture, humans began to manipulate marginal plant species to increase their productivity, digestibility and nutritional content— essentially making plants more like animal foods. This kind of tinkering continues today, with genetic modification of crop species to make “better” fruits, vegetables and grains. Similarly, the development of liquid nutritional supplements and meal replacement bars is a continuation of the trend that our ancient ancestors started: gaining as much nutritional return from our food in as little volume and with as little physical effort as possible.
Overall, that strategy has evidently worked: humans are here today and in record numbers to boot. But perhaps the strongest testament to the importance of energy- and nutrient-rich foods in human evolution lies in the observation that so many health concerns facing societies around the globe stem from deviations from the energy dynamic that our ancestors established. For children in rural populations of the developing world, low quality diets lead to poor physical growth, smaller weight and height and high rates of mortality during early life. In these cases, the foods fed to youngsters during and after weaning are often not sufficiently dense in energy and nutrients to meet the high nutritional needs associated with this period of rapid growth and development.
In the industrial world, we are facing the opposite problem: rates of childhood and adult obesity are rising because the energy-rich foods we crave—notably those packed with fat and sugar—have become widely available and relatively inexpensive. According to recent estimates, more than half of adult Americans are overweight or obese. Obesity has also appeared in parts of the developing world where it was virtually unknown less than a generation ago. This seeming paradox has emerged as people who grew up malnourished move from rural areas to urban settings where food is more readily available. In some sense, obesity and other common diseases of the modern world are continuations of a tenor that started millions of years ago. We are victims of our own evolutionary success, having developed a calorie-packed diet while minimizing the amount of maintenance energy expended on physical activity.
The magnitude of this imbalance becomes clear when we look at traditionally living human populations. Studies of the Evenki reindeer herders that I have conducted in collaboration with Michael Crawford of the University of Kansas and Ludmila Osipova of the Russian Academy of Sciences in Novosibirsk indicate that the Evenki derive almost half their daily calories from meat, more than 2.5 times the amount consumed by the average American. Yet when we compare Evenki men with their U.S. peers, they are 20 percent leaner and have cholesterol levels that are 30 percent lower.
These differences partly reflect the compositions of the diets. Although the Evenki diet is high in meat, it is relatively low in fat (about 20 percent of their dietary energy comes from fat, compared with 35 percent in the average U.S. diet), because free-ranging animals such as reindeer have less body fat than cattle and other feedlot animals do. The composition of the fat is also different in free-ranging animals, tending to be lower in saturated fats and higher in the polyunsaturated fatty acids that protect against heart disease. More important, however, the Evenki way of life necessitates a much higher level of energy expenditure.
Thus, it is not just changes in diet that have created many of our pervasive health problems but the interaction of shifting diets and changing lifestyles. Too often modern health problems are portrayed as the result of eating “bad” foods that are departures from the natural human diet. This is a fundamentally flawed approach to assessing human nutritional needs. Our species was not designed to subsist on a single, optimal diet. What is remarkable about human beings is the extraordinary variety of what we eat. We have been able to thrive in almost every ecosystem on the earth, consuming diets ranging from almost all animal foods among populations of the Arctic to primarily tubers and cereal grains among populations in the high Andes. Indeed, the hallmarks of human evolution have been the diversity of strategies that we have developed to create diets that meet our distinctive metabolic requirements and the ever increasing efficiency with which we extract energy and nutrients from the environment. (Feature article, abridged. From Scientific American, December 2002)
Exercise 3. Which is the best summary of the text? Why?
Can you suggest your own variant of the summary?
Scientific interest in the evolution of human nutritional requirements has a long history. Some scientists argued that the prevalence in modern societies of many chronic diseases—obesity, hypertension, coronary heart disease and diabetes, among them—is the consequence of a mismatch between modern dietary patterns and the type of diet that our species evolved to eat as prehistoric hunter-gatherers. Since then, however, understanding of the evolution of human nutritional needs has advanced considerably—thanks to new comparative analyses of traditionally living human populations and other primates—and a more nuanced picture has emerged. We now know that humans have evolved not to subsist on a single, Paleolithic diet but to be flexible eaters, an insight that has important implications for the current debate over what people today should eat in order to be healthy. The challenge our modern societies now face is balancing the calories we consume with the calories we burn.
Contemporary human populations the world over have diets richer in calories and nutrients than those of our cousins, the great apes. Differences in the settings in which humans and apes evolved may help explain the variation in costs of movement. Chimps, gorillas and orangutans evolved in and continue to occupy dense forests where only a mile or so of trekking over the course of the day is all that is needed to find enough to eat. Much of early hominid evolution, on the other hand, took place in more open woodland and grassland, where sustenance is harder to come by. Thus, for far-ranging foragers, cost-effective walking saves many calories in maintenance energy needs—calories that can instead go toward reproduction. Selection for energetically efficient locomotion is therefore likely to be more intense among far-ranging animals because they have the most to gain.