The CLR doesn’t actually work with modules, it works with assemblies. An assembly is an abstract concept that can be difficult to grasp initially. First, an assembly is a logical grouping of one or more modules or resource files. Second, an assembly is the smallest unit of reuse, security, and versioning. Depending on the choices you make with your compilers or tools, you can produce a single-file or a multifile assembly. In the CLR world, an assembly is what we would call a component.
In Chapter 2, I’ll go over assemblies in great detail, so I don’t want to spend a lot of time on them here. All I want to do now is make you aware that there is this extra conceptual notion that offers a way to treat a group of files as a single entity.
Figure 1-2 should help explain what assemblies are about. In this figure, some managed modules and resource (or data) files are being processed by a tool. This tool produces a single PE32(+) file that represents the logical grouping of files. What happens is that this PE32(+) file contains a block of data
called the manifest. The manifest is simply another set of metadata tables. These tables describe the files that make up the assembly, the publicly exported types implemented by the files in the assembly, and the resource or data files that are associated with the assembly.
FIGURE 1-2Combining managed modules into assemblies.
By default, compilers actually do the work of turning the emitted managed module into an assem- bly; that is, the C# compiler emits a managed module that contains a manifest. The manifest indicates that the assembly consists of just the one file. So, for projects that have just one managed module and no resource (or data) files, the assembly will be the managed module, and you don’t have any ad- ditional steps to perform during your build process. If you want to group a set of files into an assem- bly, you’ll have to be aware of more tools (such as the assembly linker, AL.exe) and their command- line options. I’ll explain these tools and options in Chapter 2.
An assembly allows you to decouple the logical and physical notions of a reusable, securable, versionable component. How you partition your code and resources into different files is completely up to you. For example, you could put rarely used types or resources in separate files that are part of an assembly. The separate files could be downloaded on demand from the web as they are needed at run time. If the files are never needed, they’re never downloaded, saving disk space and reducing
installation time. Assemblies allow you to break up the deployment of the files while still treating all of the files as a single collection.
An assembly’s modules also include information about referenced assemblies (including their version numbers). This information makes an assembly self-describing. In other words, the CLR can determine the assembly’s immediate dependencies in order for code in the assembly to execute. No additional information is required in the registry or in Active Directory Domain Services (AD DS). Because no additional information is needed, deploying assemblies is much easier than deploying unmanaged components.