Liquid and Vapour Flows in a Tray ColumnThe next few figures show the direction of vapour and liquid flow across a tray, and across a column.
Each tray has 2 conduits, one on each side, called ‘downcomers’. Liquid falls through the downcomers by gravity from one tray to the one below it. The flow across each plate is shown in the above diagram on the right.
A weir on the tray ensures that there is always some liquid (holdup) on the tray and is designed such that the holdup is at a suitable height, e.g. such that the bubble caps are covered by liquid.
Being lighter, vapour flows up the column and is forced to pass through the liquid, via the openings on each tray. The area allowed for the passage of vapour on each tray is called the active tray area.
As the hotter vapour passes through the liquid on the tray above, it transfers heat to the liquid. In doing so, some of the vapour condenses adding to the liquid on the tray. The condensate, however, is richer in the less volatile components than is in the vapour. Additionally, because of the heat input from the vapour, the liquid on the tray boils, generating more vapour. This vapour, which moves up to the next tray in the column, is richer in the more volatile components. This continuous contacting between vapour and liquid occurs on each tray in the column and brings about the separation between low boiling point components and those with higher boiling points.
Tray Designs
A tray essentially acts as a mini-column, each accomplishing a fraction of the separation task. From this we can deduce that the more trays there are, the better the degree of separation and that overall separation efficiency will depend significantly on the design of the tray. Trays are designed to maximise vapour-liquid contact by considering the
- liquid distribution and
- vapour distribution
on the tray. This is because better vapour-liquid contact means better separation at each tray, translating to better column performance. Less trays will be required to achieve the same degree of separation. Attendant benefits include less energy usage and lower construction costs.
Packings
There is a clear trend to improve separations by supplementing the use of trays by additions of packings. Packings are passive devices that are designed to increase the interfacial area for vapour-liquid contact. The following pictures show 3 different types of packings.
These strangely shaped pieces are supposed to impart good vapour-liquid contact when a particular type is placed together in numbers, without causing excessive pressure-drop across a packed section. This is important because a high pressure drop would mean that more energy is required to drive the vapour up the distillation column.
Structured packing (photo courtesy of Paul Phillips)
Date: 2016-01-14; view: 1005
|