![]() CATEGORIES: BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism |
Figure A-3 Geometric Fields in a Conducting Layer
Wire-Width Values You can use the wire_edge_enlargement statement with the wire_top_enlargement statement or the wire_bottom_enlargement statement, or both in the ICT file. If you use the wire_edge_enlargement statement with either or both of these statements, the width of the wires defined by wee_widths must be biased as follows: drawn_width + ((top + bottom) / 2) When calculating resistivity as a function of width, you must use the wire_top_enlargement and wire_bottom_enlargement values to correct the resistance-width pairs. If a table of wire-edge enlargement values is available, Fire & Ice QX uses the wire widths in the table, which always include biasing and wire-edge enlargement. If this table is not available, Fire & Ice QX calculates the resistance as follows: rho* L / (drawn_width + (top + bottom) / 2 + (top + bottom) / 2) where rho is the sheet resistivity. Fire & Ice QX uses wire-width values in the following order: 1. Drawn width 2. Biased width 3. Edge-enlarged width 4. Resistivity as a function of width Figure A-4 illustrates the defining of the conductor layer. Figure A-4 Example Conductor Definition
Example conductor "POLYCIDE" { min_spacing 0.25 min_width 0.16 height 0.35 upto 0.55 resistivity 8.6 gate_forming_layer true }conductor "M1" { min_spacing 0.30 min_width 0.30 delta_layer POLYCIDE delta_height 0.30 thickness 0.25 resistivity 8.0 gate_forming_layer false wire_top_enlargement 0.01 wire_bottom_enlargement -0.01 wire_edge_enlargement { wee_widths 0.18 0.00 0.26 0.30 0.34 wee_spacings 0.18 0.00 0.26 0.30 0.34 0.38 wee_adjustments 0.00 0.00 -0.10 -0.10 -0.20 0.00 0.00 0.00 -0.10 -0.20 0.10 0.00 0.00 0.00 -0.10 0.10 0.10 0.00 0.00 0.00 0.20 0.20 0.10 0.00 0.00 0.30 0.20 0.20 0.10 0.00 }} Dielectric The dielectric command defines dielectric layers. All measurements are in microns unless otherwise specified. Syntax dielectric name {conformal value field1 value1 ... fieldN valueN} or dielectricname{ conformalvalue field1 value1 ... fieldN valueN } You can specify the field-value pairs in any order. The syntax for planar dielectrics contains the following parameters: · name Specifies the name of the dielectric layer. · conformal false Specifies that the dielectric is planar. This field is required. · height value Specifies the layer's height above the substrate. · thickness value Specifies the layer's thickness. · dielectric_constant value Specifies the dielectric constant for this material. · delta_height value Specifies the layer's height relative to the top of another layer. · delta_layer layer_name Specifies the reference layer for delta_height. It must be a layer that has already been defined. A reference layer can be a conducting layer or a dielectric layer. · upto value Specifies the layer's top surface height above the substrate. This value is equal to the height plus the thickness. You only need to specify two of the three parameters (height (or {delta_height, delta_layer}), thickness, upto) to complete the geometrical definition of a dielectric layer. The required fields in the specification for planar dielectrics are conformal, dielectric_constant, and two of the following three parameters: · height (or {delta_height and delta_layer}) · thickness · upto Figure A-5 illustrates the planar dielectric syntax. Date: 2016-01-14; view: 1462
|