Module 2. Analitic geometry. Introduction to CalculusModule 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 1
1. Calculate the limits: à) ; b) ;
c) ; d) .
2. Calculate the limits: à) ; b) . .
3 Investigate the function for continuity: .
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 2
1. Calculate the limits: à) ; b) ;
c) ; d) .
4. Calculate the limits: à) ; b) .
5. Investigate the function for continuity.
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 3
1Calculate the limits: à) ; b) ;
c) ; d) .
4. Calculate the limits: à) ; b) . .
5. Investigate the function for continuity: .
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 4
1. Calculate the limits: à) ; b) ;
c) ; d) .
4. Calculate the limits: à) ; b) .
5. Investigate the function for continuity:
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 5
1.
Calculate the limits: à) ; b) ;
c) ; d) .
4. Calculate the limits: à) ; b) .
5. Investigate the function for continuity:
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 6
1.. Calculate the limits: à) ; b) ;
c) ; d) .
4. Calculate the limits: à) ; b) .
5. Investigate the function for continuity: .
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 7
1.. Calculate the limits: à) ; b) ;
c) ; d) .
4. Calculate the limits: à) ; b) .
5. Investigate the function for continuity: .
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 8
Calculate the limits: à) ; b) ;
c) ; d) .
4. Calculate the limits: à) ; b) .
5. Investigate the function for continuity: .
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 9
1Calculate the limits: à) ; b) ;
c) ; d) .
4. Calculate the limits: à) ; b) .
5. Investigate the function for continuity: .
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 10
1. Calculate the limits: à) ; b) ;
c) ; d) .
5. Calculate the limits: à) ; b) .
6. Investigate the function for continuity:
Module 2. Analitic geometry. Introduction to Calculus
Date: 2015-12-24; view: 992
|