Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






Artificial cloning of organisms

Artificial cloning of organisms may also be called reproductive cloning.

Methods

Reproductive cloning generally uses "somatic cell nuclear transfer" (SCNT) to create animals that are genetically identical. This process entails the transfer of a nucleus from a donor adult cell (somatic cell) to an egg that has no nucleus. If the egg begins to divide normally it is transferred into the uterus of the surrogate mother. Such clones are not strictly identical since the somatic cells may contain mutations in their nuclear DNA. Additionally, the mitochondria in the cytoplasm also contains DNA and during SCNT this DNA is wholly from the donor egg, thus the mitochondrial genome is not the same as that of the nucleus donor cell from which it was produced. This may have important implications for cross-species nuclear transfer in which nuclear-mitochondrial incompatibilities may lead to death.

Artificial embryo splitting or embryo twinning may also be used as a method of cloning, where an embryo is split in the maturation before embryo transfer. It is optimally performed at the 6- to 8-cell stage, where it can be used as an expansion of IVF to increase the number of available embryos.[7] If both embryos are successful, it gives rise to monozygotic (identical) twins.

Dolly the Sheep

Main article: Dolly the Sheep

Dolly, a Finn-Dorset ewe, was the first mammal to have been successfully cloned from an adult cell. She was cloned at the Roslin Institute in Scotland and lived there from her birth in 1996 until her death in 2003 when she was six. Her stuffed remains were placed at Edinburgh's Royal Museum, part of the National Museums of Scotland.[8]

Dolly was publicly significant because the effort showed that the genetic material from a specific adult cell, programmed to express only a distinct subset of its genes, can be reprogrammed to grow an entirely new organism. Before this demonstration, it had been shown by John Gurdon that nuclei from differentiated cells could give rise to an entire organism after transplantation into an enucleated egg.[9] However, this concept was not yet demonstrated in a mamallian system.

Cloning Dolly the sheep had a low success rate per fertilized egg; she was born after 237 eggs were used to create 29 embryos, which only produced three lambs at birth, only one of which lived. Seventy calves have been created and one third of them died young; Prometea took 277 attempts. Notably, although the first clones were frogs, no adult cloned frog has yet been produced from a somatic adult nucleus donor cell.

There were early claims that Dolly the Sheep had pathologies resembling accelerated aging. Scientists speculated that Dolly's death in 2003 was related to the shortening of telomeres, DNA-protein complexes that protect the end of linear chromosomes. However, other researchers, including Ian Wilmut who led the team that successfully cloned Dolly, argue that Dolly's early death due to respiratory infection was unrelated to deficiencies with the cloning process.



Water buffalo

On September 15, 2007, the Philippines announced its development[disambiguation needed] of Southeast Asia’s first cloned water buffalo. The Philippine Council for Agriculture, Forestry and Natural Resources Research and Development (PCARRD), under the Department of Science and Technology in Los Baños, Laguna approved this project. [10]

Species cloned

Further information: List of animals that have been cloned

The modern cloning techniques involving nuclear transfer have been successfully performed on several species. Landmark experiments[clarification needed] in chronological order:

  • Tadpole: (1952) Many scientists questioned whether cloning had actually occurred and unpublished experiments by other labs were not able to reproduce the reported results.[citation needed]
  • Carp: (1963) In China, embryologist Tong Dizhou produced the world's first cloned fish by inserting the DNA from a cell of a male carp into an egg from a female carp. He published the findings in a Chinese science journal.[11]
  • Mice: (1986) A mouse was the first mammal successfully cloned from an early embryonic cell. Soviet scientists Chaylakhyan, Veprencev, Sviridova, and Nikitin had the mouse "Masha" cloned. Research was published in the magazine "Biofizika" volume ÕÕÕII, issue 5 of 1987.[clarification needed][12]
  • Sheep: (1996) From early embryonic cells by Steen Willadsen. Megan and Morag[13] cloned from differentiated embryonic cells in June 1995 and Dolly the sheep from a somatic cell in 1997.[14]
  • Rhesus Monkey: Tetra (January 2000) from embryo splitting[15][clarification needed][16]
  • Gaur: (2001) was the first endangered species cloned.[17]
  • Cattle: Alpha and Beta (males, 2001) and (2005) Brazil[18]
  • Cat: CopyCat "CC" (female, late 2001), Little Nicky, 2004, was the first cat cloned for commercial reasons[19]
  • Dog: Snuppy, a male Afghan hound was the first cloned dog (2005).[20]
  • Rat: Ralph, the first cloned rat (2003)[21]
  • Mule: Idaho Gem, a john mule born 4 May 2003, was the first horse-family clone.[22]
  • Horse: Prometea, a Haflinger female born 28 May 2003, was the first horse clone.[23]
  • Water Buffalo: Samrupa was the first cloned water buffalo. It was born on February 6, 2009, at India's Karnal National Diary Research Institute but died five days later due to lung infection.[24]
  • Camel: (2009) Injaz, is the first cloned camel.[25]

Human cloning

Main article: Human cloning

Human cloning is the creation of a genetically identical copy of an existing or previously existing human. The term is generally used to refer to artificial human cloning; human clones in the form of identical twins are commonplace, with their cloning occurring during the natural process of reproduction. There are two commonly discussed types of human cloning: therapeutic cloning and reproductive cloning. Therapeutic cloning involves cloning adult cells for use in medicine and is an active area of research. Reproductive cloning would involve making cloned humans. A third type of cloning called replacement cloning is a theoretical possibility, and would be a combination of therapeutic and reproductive cloning. Replacement cloning would entail the replacement of an extensively damaged, failed, or failing body through cloning followed by whole or partial brain transplant.

The various forms of human cloning are controversial.[26] There have been numerous demands for all progress in the human cloning field to be halted. Most scientific, governmental and religious organizations oppose reproductive cloning. The American Association for the Advancement of Science (AAAS) and other scientific organizations have made public statements suggesting that human reproductive cloning be banned until safety issues are resolved.[27] Serious ethical concerns have been raised by the future possibility of harvesting organs from clones.[citation needed] Some people have considered the idea of growing organs separately from a human organism - in doing this, a new organ supply could be established without the moral implications of harvesting them from humans. Research is also being done on the idea of growing organs that are biologically acceptable to the human body inside of other organisms, such as pigs or cows, then transplanting them to humans, a form of xenotransplantation.

The first hybrid human clone was created in November 1998, by American Cell Technologies.[28] It was created from a man's leg cell, and a cow's egg whose DNA was removed. It was destroyed after 12 days. Since a normal embryo implants at 14 days, Dr Robert Lanza, ACT's director of tissue engineering, told the Daily Mail newspaper that the embryo could not be seen as a person before 14 days. While making an embryo, which may have resulted in a complete human had it been allowed to come to term, according to ACT: "[ACT's] aim was 'therapeutic cloning' not 'reproductive cloning'"

On January, 2008, Wood and Andrew French, Stemagen's chief scientific officer in California, announced that they successfully created the first 5 mature human embryos using DNA from adult skin cells, aiming to provide a source of viable embryonic stem cells. Dr. Samuel Wood and a colleague donated skin cells, and DNA from those cells was transferred to human eggs. It is not clear if the embryos produced would have been capable of further development, but Dr. Wood stated that if that were possible, using the technology for reproductive cloning would be both unethical and illegal. The 5 cloned embryos, created in Stemagen Corporation lab, in La Jolla, were destroyed.[29]


Date: 2015-12-24; view: 1164


<== previous page | next page ==>
Cloning in stem cell research | Cloning extinct and endangered species
doclecture.net - lectures - 2014-2024 year. Copyright infringement or personal data (0.009 sec.)