![]() CATEGORIES: BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism |
Unit 16 Lattice Shells1 Introduction2interface 1.1 Read the text title and hypothesize what the text is about. Write down your hypothesis.
1.11 What do you know concerning this issue? List your ideas in the table left column I know.
1.12 If you know answers to these questions write them down in the space given after each question.
1.13 Circle in the list the words and expressions you know. Write down their translation in the table and calculate the percentage of your lexical competence.
Vladimir Grigoryevich Shukhov (1853 1939) was a Russian engineer, scientist and architect who worked out new methods of analysis for structural engineering that led to the breakthrough in industrial design of world's first hyperboloid structures, lattice shell structures, tensile structures, pipelines, boilers, ships and bridges.
The worlds first bearing lattice shells of the overhead covers and towers were built by Vladimir Shukhov in 1896 for the biggest pre-revolution exhibition of Russia XVI All-Russia industrial and art exhibition in Nizhniy Novgorod. Of the two steel gridshells of the exhibition pavilions one was oval in plan and the other was circular. The roofs of these pavilions were doubly curved gridshells formed entirely of a lattice of straight angle-iron and flat iron bars.
The attention of foreign guests was most of all drawn by the open-work lattice steel hyperboloid water tower. This worlds first hyperboloid lattice structure-shell still exists near the palace of aristocrats Nechaev in Polibino, not far from the Kulikov field.
Lord Norman Foster writes: Vladimir Grigoryevich Shukhov was one of the greatest structural engineers of the early Twentieth Century and unquestionably the leading engineer of his era in Russia. He pioneered the use of entirely new structural systems, creating hyperboloid structures of double curvature whose lightness and geometric complexity defy the imagination, even in the computer age. The Shabolovka Tower is his masterwork. It is a structure of dazzling brilliance and great historic importance. It was the first landmark structure of the Soviet period, soaring 150 metres into the air to command the Moscow skyline. In its day, the filigree lattice structure was a pure expression of technical progress a symbol of faith in the coming age. What is interesting, theShabolovka Tower (1919 1922) was being built without using scaffolds and cranes. The upper sections were being assembled inside the lower one, lifted and put on each other. During more than 80 years the Shukhov Tower served as a support for large antennas of radio and television stations. Shukhov designed a 350m tower, which surpassed the Eiffel tower in height by 50m, while using less than a quarter of the amount of material.
Due to its lattice structure, the steel shell of the Shukhov Tower experiences minimum wind load. The tower sections are single-cavity hyperboloids of rotation made of straight beams, the ends of which rest against circular foundations. The round tapered body of the tower consists of 6 sections, each 25 meters high. The lower section is mounted on a concrete foundation base, 40 meters in diameter and 3 meters in depth. The elements of the tower are riveted together.
During the XX century lattice structures of bearing shells were used not enough due to the complexity of their calculation without computers. During the second half of XX century the high-tech architects, the famous Buckminster Fuller, Frei Otto, Oscar Niemeyer implemented lattice shells into the modern practice of construction. At the end of XX century the beginning of XXI century the perfection of technologies led to the appearance of very elegant architecture, the recognized leader of which soon became Lord Norman Foster.
Compare Norman Fosters lattice overhead covers of the British Museum with the overhead covers made by Vladimir Shukhov in 1896 in Nizhniy Novgorod (there are differences, of course, but the idea has not changed). 30 St Mary Axe, better known by its nickname the Gherkin (cucumber), is one of the most eye-catching buildings in London and it stands out prominently in the city's skyline. The 41 story tower was built in 2004 in the heart of London's financial center. The construction of a glittering high-tech building in the middle of a relatively low-rise area with plenty of historic buildings and narrow medieval streets set off a new debate about the need for tall buildings in the City of London. The Gherkin has acted as a catalyst for the growing cluster of high-rises in the City. The cigar-shaped structure has a steel frame with circular floor plans and a glass facade with diamond-shaped panels. The swirling striped pattern visible on the exterior is the result of the building's energy-saving system which allows the air to flow up through spiraling wells. On the street level, the Gherkin's base is well integrated with an open public plaza. Huge white X braces create a dramatic entrance. The top of the tower, where visitors find an open hall covered by a glass conical dome is even more spectacular. From here you have great views over the city. Its unique, bold and energy efficient design has won the Gherkin many awards including the Stirling Prize, the London Region Award, and the Emporis Skyscraper Award.
The architects have increased the size of the traditional Pysanka almost 44 times. Powerful lattice shell is used as the central core. The structure would house a hotel, several office levels, trade and entertainment complex, and on the upper floors - luxury penthouses. The whole exterior inter-active cover of the multi-storeyed building turns into the equivalent of a huge light-emitting diode screen that consists of 33000 separate pixels. Every pixel is a separate light-emitting diode lamp, consisting of red, green and blue light-emitting diode (RGB). The exterior inter-active cover acts like usual light-emitting diode screen. It is steered by special software. The operator can load every digital static or dynamic changing picture on the screen. It changes constantly and turns into another one. Millions of patterns of small coloured eggs are united into the big one, which varies every second but always remains the new one! Date: 2015-12-24; view: 1724
|