Integration of simple rational fractions. Integration of rational fractions. Integration of expressions containing trigonometric functions. Integration of irrational functions
Theoretical questions:
1. Integration of rational fractions. 2. Integration of expressions containing trigonometric functions. 3. Integration of irrational functions.
Classroom assignments:
1. Calculate integrals:
1. 2. 3.
4. 5.
2. Find integrals using appropriate substitution:
1. 2. 3. 4.
5.
3. Calculate integrals:
1. 2. 3.
4. 5. 6.
7. 8.
Homework:
Theoretical material: The definite integral. Problems leading to the definite integral. The Newton-Leibniz formula.
Solve problems:
Calculate integrals: 1. 2.
3. 4. 5. 6.
7. 8. 9.
10.
PRACTICAL CLASS ¹ 12-15
The definite integral. Problems leading to the definite integral. The Newton-Leibniz FORMULA. Applications to the computation of the integrals of plane figures areas. Calculation the arc length, the amount of body rotation. The improper integral
Theoretical questions:
1. Newton – Leibniz formula. 2. Basic methods of integration. 3. Geometric applications of the definite integral.
Classroom assignments:
1. Find integrals using Newton – Leibniz formula
1. 2. 3. 4.
5.
2. Calculate integrals: 1. 2. 3. 4. 5.
3. Find the area bounded by the curve , the x-axis, and the lines and .
4. Find the area of the ellipse .
5. Find the area bounded by the curve , for .
6. Find the area of the lemniscate .
7. Find the length of the cissoid from to .
Homework:
Theoretical material: Functions of several variables and main properties. Partial derivatives and differentials.
Solve problems:
1. Find the area bounded by the parabola and the straight line .
2 Find the area bounded by the ellipse .
3. Find the area of the ellipse whose parametric equations are and .
4. Find the parabola from (0,0) to (-4,4).
Date: 2015-01-02; view: 1370
|