Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






Range of Computer Ability

Computers exist in a wide range of sizes and power. The smallest are embedded within the circuitry of appliances, such as televisions and wristwatches. These computers are typically preprogrammed for a specific task, such as tuning to a particular television frequency, delivering doses of medicine, or keeping accurate time. They generally are “hard-wired”-that is, their programs are represented as circuits that cannot be reprogrammed.

Programmable computers vary enormously in their computational power, speed, memory, and physical size. Some small computers can be held in one hand and are called personal digital assistants (PDAs). They are used as notepads, scheduling systems, and address books; if equipped with a cellular phone, they can connect to worldwide computer networks to exchange information regardless of location. Hand-held game devices are also examples of small computers.

Portable laptop and notebook computers and desktop PCs are typically used in businesses and at home to communicate on computer networks, for word processing, to track finances, and for entertainment. They have large amounts of internal memory to store hundreds of programs and documents. They are equipped with a keyboard; a mouse, trackball, or other pointing device; and a video display monitor or liquid crystal display (LCD) to display information. Laptop and notebook computers usually have similar hardware and software as PCs, but they are more compact and have flat, lightweight LCDs instead of television-like video display monitors. Most sources consider the terms “laptop” and “notebook” synonymous.

Workstations are similar to personal computers but have greater memory and more extensive mathematical abilities, and they are connected to other workstations or personal computers to exchange data. They are typically found in scientific, industrial, and business environments-especially financial ones, such as stock exchanges-that require complex and fast computations.

Mainframe computers have more memory, speed, and capabilities than workstations and are usually shared by multiple users through a series of interconnected computers. They control businesses and industrial facilities and are used for scientific research. The most powerful mainframe computers, called supercomputers, process complex and time-consuming calculations, such as those used to create weather predictions. Large businesses, scientific institutions, and the military use them. Some supercomputers have many sets of CPUs. These computers break a task into small pieces, and each CPU processes a portion of the task to increase overall speed and efficiency. Such computers are called parallel processors. As computers have increased in sophistication, the boundaries between the various types have become less rigid. The performance of various tasks and types of computing have also moved from one type of computer to another. For example, networked PCs can work together on a given task in a version of parallel processing known as distributed computing.



Networks

Computers can communicate with other computers through a series of connections and associated hardware called a network. The advantage of a network is that data can be exchanged rapidly, and software and hardware resources, such as hard-disk space or printers, can be shared. Networks also allow remote use of a computer by a user who cannot physically access the computer.

One type of network, a local area network (LAN), consists of several PCs or workstations connected to a special computer called a server, often within the same building or office complex. The server stores and manages programs and data. A server often contains all of a networked group’s data and enables LAN workstations or PCs to be set up without large storage capabilities. In this scenario, each PC may have “local” memory (for example, a hard drive) specific to itself, but the bulk of storage resides on the server. This reduces the cost of the workstation or PC because less expensive computers can be purchased, and it simplifies the maintenance of software because the software resides only on the server rather than on each individual workstation or PC.

Mainframe computers and supercomputers commonly are networked. They may be connected to PCs, workstations, or terminals that have no computational abilities of their own. These “dumb” terminals are used only to enter data into, or receive output from, the central computer.

Wide area networks (WANs) are networks that span large geographical areas. Computers can connect to these networks to use facilities in another city or country. For example, a person in Los Angeles can browse through the computerized archives of the Library of Congress in Washington, D.C. The largest WAN is the Internet, a global consortium of networks linked by common communication programs and protocols (a set of established standards that enable computers to communicate with each other). The Internet is a mammoth resource of data, programs, and utilities. American computer scientist Vinton Cerf was largely responsible for creating the Internet in 1973 as part of the United States Department of Defense Advanced Research Projects Agency (DARPA). In 1984 the development of Internet technology was turned over to private, government, and scientific agencies. The World Wide Web, developed in the 1980s by British physicist Timothy Berners-Lee, is a system of information resources accessed primarily through the Internet. Users can obtain a variety of information in the form of text, graphics, sounds, or video. These data are extensively cross-indexed, enabling users to browse (transfer their attention from one information site to another) via buttons, highlighted text, or sophisticated searching software known as search engines.

History

Beginnings

The history of computing began with an analog machine. In 1623 German scientist Wilhelm Schikard invented a machine that used 11 complete and 6 incomplete sprocketed wheels that could add, and with the aid of logarithm tables, multiply and divide.

French philosopher, mathematician, and physicist Blaise Pascal invented a machine in 1642 that added and subtracted, automatically carrying and borrowing digits from column to column. Pascal built 50 copies of his machine, but most served as curiosities in parlors of the wealthy. Seventeenth-century German mathematician Gottfried Leibniz designed a special gearing system to enable multiplication on Pascal’s machine.

First Punch Cards

In the early 19th century French inventor Joseph-Marie Jacquard devised a specialized type of computer: a silk loom. Jacquard’s loom used punched cards to program patterns that helped the loom create woven fabrics. Although Jacquard was rewarded and admired by French emperor Napoleon I for his work, he fled for his life from the city of Lyon pursued by weavers who feared their jobs were in jeopardy due to Jacquard’s invention. The loom prevailed, however: When Jacquard died, more than 30,000 of his looms existed in Lyon. The looms are still used today, especially in the manufacture of fine furniture fabrics.


Date: 2015-12-18; view: 1118


<== previous page | next page ==>
High-Level Languages | The Transistor and Integrated Circuits Transform Computing
doclecture.net - lectures - 2014-2024 year. Copyright infringement or personal data (0.006 sec.)