Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






Plastics

INTRODUCTION

Plastics, materials made up of large, organic (carbon-containing) molecules that can be formed into a variety of products. The molecules that compose plastics are long carbon chains that give plastics many of their useful properties. In general, materials that are made up of long, chainlike molecules are called polymers. The word plastic is derived from the words plasticus (Latin for “capable of molding”) and plastikos (Greek “to mold,” or “fit for molding”). Plastics can be made hard as stone, strong as steel, transparent as glass, light as wood, and elastic as rubber. Plastics are also lightweight, waterproof, chemical resistant, and produced in almost any color. More than 50 families of plastics have been produced, and new types are currently under development.

Like metals, plastics come in a variety of grades. For instance, nylons are plastics that are separated by different properties, costs, and the manufacturing processes used to produce them. Also like metals, some plastics can be alloyed, or blended, to combine the advantages possessed by several different plastics. For example, some types of impact-resistant (shatterproof) plastics and heat-resistant plastics are made by blending different plastics together.

Plastics are moldable, synthetic (chemically-fabricated) materials derived mostly from fossil fuels, such as oil, coal, or natural gas. The raw forms of other materials, such as glass, metals, and clay, are also moldable. The key difference between these materials and plastics is that plastics consist of long molecules that give plastics many of their unique properties, while glass, metals, and clay consist of short molecules.

USES OF PLASTICS

Plastics are indispensable to our modern way of life. Many people sleep on pillows and mattresses filled with a type of plastic—either cellular polyurethane or polyester. At night, people sleep under blankets and bedspreads made of acrylic plastics, and in the morning, they step out of bed onto polyester and nylon carpets. The cars we drive, the computers we use, the utensils we cook with, the recreational equipment we play with, and the houses and buildings we live and work in all include important plastic components. The average 1998-model car contains almost 136 kg (almost 300 lb) of plastics—nearly 12 percent of the vehicle’s overall weight. Telephones, textiles, compact discs, paints, plumbing fixtures, boats, and furniture are other domestic products made of plastics. In 1979 the volume of plastics produced in the United States surpassed the volume of domestically produced steel.

Plastics are used extensively by many key industries, including the automobile, aerospace, construction, packaging, and electrical industries. The aerospace industry uses plastics to make strategic military parts for missiles, rockets, and aircraft. Plastics are also used in specialized fields, such as the health industry, to make medical instruments, dental fillings, optical lenses, and biocompatible joints.



GENERAL PROPERTIES OF PLASTICS

Plastics possess a wide variety of useful properties and are relatively inexpensive to produce. They are lighter than many materials of comparable strength, and unlike metals and wood, plastics do not rust or rot. Most plastics can be produced in any color. They can also be manufactured as clear as glass, translucent (transmitting small amounts of light), or opaque (impenetrable to light).

Plastics have a lower density than that of metals, so plastics are lighter. Most plastics vary in density from 0.9 to 2.2 g/cm3 (0.45 to 1.5 oz/cu in), compared to steel’s density of 7.85 g/cm3 (5.29 oz/cu in). Plastic can also be reinforced with glass and other fibers to form incredibly strong materials. For example, nylon reinforced with glass can have a tensile strength (resistance of a material to being elongated or pulled apart) of up to 165 Mega Pascal (24,000 psi).

Plastics have some disadvantages. When burned, some plastics produce poisonous fumes. Although certain plastics are specifically designed to withstand temperatures as high as 288° C (550° F), in general plastics are not used when high heat resistance is needed. Because of their molecular stability, plastics do not easily break down into simpler components. As a result, disposal of plastics creates a solid waste problem.


Date: 2015-01-02; view: 1291


<== previous page | next page ==>
Insulation | CHEMISTRY OF PLASTICS
doclecture.net - lectures - 2014-2024 year. Copyright infringement or personal data (0.007 sec.)