Weather, state of the atmosphere at a particular time and place. The elements of weather include temperature, humidity, cloudiness, precipitation, wind, and pressure. These elements are organized into various weather systems, such as monsoons, areas of high and low pressure, thunderstorms, and tornadoes. All weather systems have well-defined cycles and structural features and are governed by the laws of heat and motion. These conditions are studied in meteorology, the science of weather and weather forecasting.
Weather differs from climate, which is the weather that a particular region experiences over a long period of time. Climate includes the averages and variations of all weather elements.
Pressure plays a vital role in all weather systems. Pressure is the force of the air on a given surface divided by the area of that surface. In most weather systems the air pressure is equal to the weight of the air column divided by the area of the column. Pressure decreases rapidly with height, halving about every 5.5 km (3.4 mi).
Weather Forecasting
Since the early 20th century, great strides have been made in weather prediction, largely as a result of computer development but also because of instrumentation such as satellites and radar. Weather data from around the world are collected by the World Meteorological Organization, the National Weather Service, and other agencies and entered into computer models that apply the laws of motion and of the conservation of energy and mass to produce forecasts. In some cases, these forecasts have provided warning of major storms as much as a week in advance. However, because the behavior of weather systems is chaotic, it is impossible to forecast the details of weather more than about two weeks in advance.
Human activities have also produced inadvertent effects on weather and climate. Adding gases such as carbon dioxide and methane to the atmosphere has increased the greenhouse effect and contributed to global warming by raising the mean temperature of the earth by about 0.5° C (about 0.9° F) since the beginning of the 20th century. More recently, chlorofluorocarbons (CFCs), which are used as refrigerants and in aerosol propellants, have been released into the atmosphere, reducing the amount of ozone worldwide and causing a thinning of the ozone layer over Antarctica each spring (around October). The potential consequences of these changes are vast. Global warming may cause sea level to rise, and the incidence of skin cancer may increase as a result of the reduction of ozone. In an effort to prevent such consequences, production of CFCs has been curtailed and many measures have been suggested to control emission of greenhouse gases, including the development of more efficient engines and the use of alternative energy sources such as solar energy and wind energy.
CFCs (chlorofluorocarbon) – are gases that are used in things such as aerosols and refrigerators and can cause damage to the ozone layer.
Climate
Climate, the long-term effect of the sun's radiation on the rotating earth's varied surface and atmosphere. It can be understood most easily in terms of annual or seasonal averages of temperature and precipitation. The word climate comes from the Greek ”klima”, referring to the inclination of the sun. Besides the effects of solar radiation and its variations, however, climate is also influenced by the complex structure and composition of the atmosphere and by the ways in which it and the ocean transport heat. Thus, for any given area on earth, not only the latitude (the sun's inclination) must be considered but also the elevation, terrain, distance from the ocean, relation to mountain systems and lakes, and other such influences. Another consideration is scale: A macroclimate refers to a broad region, a mesoclimate to a small district, and a microclimate to a minute area. A microclimate, for example, can be specified that is good for growing plants underneath large shade trees.
Climate has profound effects on vegetation and animal life, including humans. It plays statistically significant roles in many physiological processes, from conception and growth to health and disease. Humans, in turn, can affect climate through the alteration of the earth's surface and the introduction of pollutants and chemicals such as carbon dioxide into the atmosphere.
Environment
Environment, all of the external factors affecting an organism. These factors may be other living organisms (biotic factors) or nonliving variables (abiotic factors), such as temperature, rainfall, day length, wind, and ocean currents. The interactions of organisms with biotic and abiotic factors form an ecosystem. Even minute changes in any one factor in an ecosystem can influence whether or not a particular plant or animal species will be successful in its environment.
Organisms and their environment constantly interact, and both are changed by this interaction. Like all other living creatures, humans have clearly changed their environment, but they have done so generally on a grander scale than have all other species. Some of these human-induced changes—such as the destruction of the world’s tropical rain forests to create farms or grazing land for cattle—have led to altered climate patterns. In turn, altered climate patterns have changed the way animals and plants are distributed in different ecosystems.
Scientists study the long-term consequences of human actions on the environment, while environmentalists—professionals in various fields, as well as concerned citizens—advocate ways to lessen the impact of human activity on the natural world.
The science of ecology attempts to explain why plants and animals live where they do and why their populations are the sizes they are. Understanding the distribution and population size of organisms helps scientists evaluate the health of the environment.
Population Growth
Human population growth is at the root of virtually all of the world’s environmental problems. Although the growth rate of the world’s population has slowed slightly since the 1990s, the world’s population increases by about 77 million human beings each year. As the number of people increases, crowding generates pollution, destroys more habitats, and uses up additional natural resources.
The Population Division of the United Nations (UN) predicts that the world’s population will increase from 6.23 billion people in 2000 to 9.3 billion people in 2050. The UN estimates that the population will stabilize at more than 11 billion in 2200. Other experts predict that numbers will continue to rise into the foreseeable future, to as many as 19 billion people by the year 2200.
Although rates of population increase are now much slower in the developed world than in the developing world, it would be a mistake to assume that population growth is primarily a problem of developing countries. In fact, because larger amounts of resources per person are used in developed nations, each individual from the developed world has a much greater environmental impact than does a person from a developing country. Conservation strategies that would not significantly alter lifestyles but that would greatly lessen environmental impact are essential in the developed world.
In the developing world, meanwhile, the most important factors necessary to lower population growth rates are democracy and social justice. Studies show that population growth rates have fallen in developing areas where several social conditions exist. In these areas, literacy rates have increased and women receive economic status equal to that of men, enabling women to hold jobs and own property. In addition, birth control information in these areas is more widely available, and women are free to make their own reproductive decisions.