Regardless of bit type, it must be rotated in order to drill the rock. There are three methods used to turn the bit downhole:
1. The drillstring and bit are turned by a rotary table and kelly.
2. The drillstring and bit are rotated by a “top-drive” motor.
3. Only the bit is rotated by a hydraulic mud motor in the drillstring. (The drillstring can be held still or rotated while using a mud motor, as desired.)
Rotary table and kelly. A rotary table is a gear- and chain-driven turntable mounted into the rig floor that has a large open center for the bit and drillstring. The rotary table kelly bushing is a large, metal “donut” with a 4-, 6- or 8- sided hole at its center. This bushing can accept a special piece of 4-, 6- or 8-sided pipe, called the kelly. The kelly, which is about 40 ft long, is turned by the Kelly bushing in the rotary table, just as a hex nut is turned by a wrench. The kelly is free to slide up and down in the Kelly bushing so it can be raised while a 30-ft joint of drill pipe (the topmost joint in the drillstring) is attached to its bottom. The drill pipe is then lowered into the hole until the bit touches bottom, and the kelly can be rotated. The driller starts the rotary table, and as the bit drills down, the kelly moves down, too. When the top end of the kelly is level with the bushing (at rig floor level), the kelly is broken out from the drill pipe, raised while another joint is added, and the process of drilling down is repeated. In order for the drilling mud to get into the drillstring, a rotary hose and mud swivel are attached to the top of the kelly to supply mud from the mud pumps. The swivel is a hollow device that receives mud from the stand pipe and rotary hose and passes it through a rotating seal to the kelly and into the drillstring. One disadvantage of the kelly/rotary arrangement is that while pulling pipe with the kelly disconnected, no mud can be pumped and pipe rotation is minimal.
Top drive. A top-drive unit has important advantages over a kelly/rotary drive. A top-drive unit rotates the drillstring with a large hydraulic motor mounted high in the derrick on a traveling mechanism. Rather than drilling one 30-ft joint before making a connection, top drives use 3-joint (90-ft) “stands” of drill pipe and greatly reduce the number of connections and the time to make a trip. One key advantage — the driller can simultaneously rotate the pipe while going up or down over a 90 ft distance in the hole and circulate mud. This allows long, tight spots to be quickly and easily reamed without sticking the pipe. Due to these advantages, top drive units are being installed on most deep rigs and offshore rigs.
Mud motor. While the first two rotation methods involve turning the drill pipe in order to turn the bit, this method is different. In this case, there is a hydraulic motor (turbine or positive-displacement mud motor) mounted in the BHA near the bit. During drilling, hydraulic energy from the mud passing through the motor turns the bit. This is achieved through the use of multiple rotor/stator elements inside the motor which rotate a shaft to which the bit is attached. This offers several advantages. Mud motors can achieve much higher bit rotational speeds than can be achieved by rotating the entire drillstring. Less energy is required to turn just the bit. The hole and casing stay in better condition, as does the drillstring, when only the bit (and not the pipe) rotates. Higher bit RPM results in improved Rate of Penetration (ROP), and vibration is less of a problem. Mud motors are used extensively for directional drilling where it is essential to keep an orienting tool positioned in the desired direction.