In a fission bomb, the fuel must be kept in separate subcritical masses, which will not support fission, to prevent premature detonation. Critical mass is the minimum mass of fissionable material required to sustain a nuclear fission reaction. Think about the marble analogy again. If the circle of marbles are spread too far apart -- subcritical mass -- a smaller chain reaction will occur when the "neutron marble" hits the center. If the marbles are placed closer together in the circle -- critical mass -- there is a higher chance a big chain reaction will take place.
Keeping the fuel in separate subcritical masses leads to design challenges that must be solved for a fission bomb to function properly. The first challenge, of course, is bringing the subcritical masses together to form a supercritical mass, which will provide more than enough neutrons to sustain a fission reaction at the time of detonation. Bomb designers came up with two solutions, which we'll cover in the next section.
Next, free neutrons must be introduced into the supercritical mass to start the fission. Neutrons are introduced by making a neutron generator. This generator is a small pellet of polonium and beryllium, separated by foil within the fissionable fuel core. In this generator:
The foil is broken when the subcritical masses come together and polonium spontaneously emits alpha particles.
These alpha particles then collide with beryllium-9 to produce beryllium-8 and free neutrons.
The neutrons then initiate fission.
Finally, the design must allow as much of the material as possible to be fissioned before the bomb explodes. This is accomplished by confining the fission reaction within a dense material called a tamper, which is usually made of uranium-238. The tamper gets heated and expanded by the fission core. This expansion of the tamper exerts pressure back on the fission core and slows the core's expansion. The tamper also reflects neutrons back into the fission core, increasing the efficiency of the fission reaction.
Fission Bomb Triggers
The simplest way to bring the subcritical masses together is to make a gun that fires one mass into the other. A sphere of U-235 is made around the neutron generator and a small bullet of U-235 is removed. The bullet is placed at the one end of a long tube with explosives behind it, while the sphere is placed at the other end. A barometric-pressure sensor determines the appropriate altitude for detonation and triggers the following sequence of events:
The explosives fire and propel the bullet down the barrel.
The bullet strikes the sphere and generator, initiating the fission reaction.
The fission reaction begins.
The bomb explodes.
The second way to create a supercritical mass requires compressing the subcritical masses together into a sphere by implosion. Fat Man, the bomb dropped on Nagasaki, was one of these so-called implosion-triggered bombs. It wasn't easy to build. Early bomb designers faced several problems, particularly how to control and direct the shock wave uniformly across the sphere. Their solution was to create an implosion device consisting of a sphere of U-235 to act as the tamper and a plutonium-239 core surrounded by high explosives. When the bomb was detonated, it had a 23-kiloton yield with an efficiency of 17 percent. This is what happened:
The explosives fired, creating a shock wave.
The shock wave compressed the core.
The fission reaction began.
The bomb exploded.
Designers were able to improve the basic implosion-triggered design. In 1943, American physicist Edward Teller invented the concept of boosting. Boosting refers to a process whereby fusion reactions are used to create neutrons, which are then used to induce fission reactions at a higher rate. It took another eight years before the first test confirmed the validity of boosting, but once the proof came, it became a popular design. In the years that followed, almost 90 percent of nuclear bombs built in America used the boost design.
Of course, fusion reactions can be used as the primary source of energy in a nuclear weapon, too. In the next section, we'll look at the inner workings of fusion bombs.
Fusion Bombs
Fission bombs worked, but they weren't very efficient. It didn't take scientists long to wonder if the opposite nuclear process -- fusion -- might work better. Fusion occurs when the nuclei of two atoms combine to form a single heavier atom. At extremely high temperatures, the nuclei of hydrogen isotopes deuterium and tritium can readily fuse, releasing enormous amounts of energy in the process. Weapons that take advantage of this process are known as fusion bombs, thermonuclear bombs or hydrogen bombs. Fusion bombs have higher kiloton yields and greater efficiencies than fission bombs, but they present some problems that must be solved:
Deuterium and tritium, the fuels for fusion, are both gases, which are hard to store.
Tritium is in short supply and has a short half-life.
Fuel in the bomb has to be continuously replenished.
Deuterium or tritium has to be highly compressed at high temperature to initiate the fusion reaction.
Scientists overcome the first problem by using lithium-deuterate, a solid compound that doesn't undergo radioactive decay at normal temperature, as the principal thermonuclear material. To overcome the tritium problem, bomb designers rely on a fission reaction to produce tritium from lithium. The fission reaction also solves the final problem. The majority of radiation given off in a fission reaction is X-rays, and these X-rays provide the high temperatures and pressures necessary to initiate fusion. So, a fusion bomb has a two-stage design -- a primary fission or boosted-fission component and a secondary fusion component.
To understand this bomb design, imagine that within a bomb casing you have an implosion fission bomb and a cylinder casing of uranium-238 (tamper). Within the tamper is the lithium deuteride (fuel) and a hollow rod of plutonium-239 in the center of the cylinder. Separating the cylinder from the implosion bomb is a shield of uranium-238 and plastic foam that fills the remaining spaces in the bomb casing. Detonation of the bomb causes the following sequence of events:
The fission bomb implodes, giving off X-rays.
These X-rays heat the interior of the bomb and the tamper; the shield prevents premature detonation of the fuel.
The heat causes the tamper to expand and burn away, exerting pressure inward against the lithium deuterate.
The lithium deuterate is squeezed by about 30-fold.
The compression shock waves initiate fission in the plutonium rod.
The fissioning rod gives off radiation, heat and neutrons.
The neutrons go into the lithium deuterate, combine with the lithium and make tritium.
The combination of high temperature and pressure are sufficient for tritium-deuterium and deuterium-deuterium fusion reactions to occur, producing more heat, radiation and neutrons.
The neutrons from the fusion reactions induce fission in the uranium-238 pieces from the tamper and shield.
Fission of the tamper and shield pieces produce even more radiation and heat.
The bomb explodes.
All of these events happen in about 600 billionths of a second (550 billionths of a second for the fission bomb implosion, 50 billionths of a second for the fusion events). The result is an immense explosion with a 10,000-kiloton yield -- 700 times more powerful than the Little Boy explosion.
Nuclear Bomb Delivery
It's one thing to build a nuclear bomb. It's another thing entirely to deliver the weapon to its intended target and detonate it successfully. This was especially true of the first bombs built by scientists at the end of World War II. Writing in a 1995 issue of Scientific American, Philip Morrison, a member of the Manhattan Project, said this about the early weapons: "All three bombs of 1945 -- the [Trinity] test bomb and the two bombs dropped on Japan -- were more nearly improvised pieces of complex laboratory equipment than they were reliable weaponry."
The delivery of those bombs to their final destination was improvised almost as much as their design and construction. The USS Indianapolis transported the parts and enriched uranium fuel of the Little Boy bomb to the Pacific island of Tinian on July 28, 1945. The components of the Fat Man bomb, carried by three modified B-29s, arrived on August 2. A team of 60 scientists flew from Los Alamos, N.M., to Tinian to assist in the assembly. The Little Boy bomb -- weighing 9,700 pounds (4,400 kilograms) and measuring 10 feet (3 meters) from nose to tail -- was ready first. On August 6, a crew loaded the bomb into the Enola Gay, a B-29 piloted by Col. Paul Tibbets. The plane made the 750-mile (1,200-kilometer) trip to Japan and dropped the bomb into the air above Hiroshima, where it detonated at exactly 8:12 a.m. On August 9, the nearly 11,000-pound (5,000-kilogram) Fat Man bomb made the same journey aboard the Bockscar, a second B-29 piloted by Maj. Charles Sweeney. Its deadly payload exploded over Nagasaki just before noon.
Today, the method used in Japan -- gravity bombs carried by aircraft -- remains a viable way to deliver nuclear weapons. But over the years, as warheads have decreased in size, other options have become available. Many countries have stockpiled a number of ballistic and cruise missiles armed with nuclear devices. Most ballistic missiles are launched from land-based silos or submarines. They exit the Earth's atmosphere, travel thousands of miles to their targets and re-enter the atmosphere to deploy their weapons. Cruise missiles have shorter ranges and smaller warheads than ballistic missiles, but they are harder to detect and intercept. They can be launched from the air, from mobile launchers on the ground and from naval ships.
Tactical nuclear weapons, or TNWs, also became popular during the Cold War. Designed to target smaller areas, TNWs include short-range missiles, artillery shells, land mines and depth charges. Portable TNWs, such as the Davy Crockett rifle, make it possible for small one- or two-man teams to deliver a nuclear strike.
Consequences and Health Risks of Nuclear Bombs
The detonation of a nuclear weapon unleashes tremendous destruction, but the ruins would contain microscopic evidence of where the bombs' materials came from. The detonation of a nuclear bomb over a target such as a populated city causes immense damage. The degree of damage depends upon the distance from the center of the bomb blast, which is called the hypocenter or ground zero. The closer you are to the hypocenter, the more severe the damage. The damage is caused by several things:
A wave of intense heat from the explosion
Pressure from the shock wave created by the blast
Radiation
Radioactive fallout (clouds of fine radioactive particles of dust and bomb debris that fall back to the ground)
At the hypocenter, everything is immediately vaporized by the high temperature (up to 500 million degrees Fahrenheit or 300 million degrees Celsius). Outward from the hypocenter, most casualties are caused by burns from the heat, injuries from the flying debris of buildings collapsed by the shock wave and acute exposure to the high radiation. Beyond the immediate blast area, casualties are caused from the heat, the radiation and the fires spawned from the heat wave. In the long term, radioactive fallout occurs over a wider area because of prevailing winds. The radioactive fallout particles enter the water supply and are inhaled and ingested by people at a distance from the blast.
Scientists have studied survivors of the Hiroshima and Nagasaki bombings to understand the short-term and long-term effects of nuclear explosions on human health. Radiation and radioactive fallout affect those cells in the body that actively divide (hair, intestine, bone marrow, reproductive organs). Some of the resulting health conditions include:
Nausea, vomiting and diarrhea
Cataracts
Hair loss
Loss of blood cells
These conditions often increase the risk of leukemia, cancer, infertility and birth defects.
Scientists and physicians are still studying the survivors of the bombs dropped on Japan and expect more results to appear over time.
In the 1980s, scientists assessed the possible effects of nuclear warfare (many nuclear bombs exploding in different parts of the world) and proposed the theory that a nuclear winter could occur. In the nuclear-winter scenario, the explosion of many bombs would raise great clouds of dust and radioactive material that would travel high into Earth's atmosphere. These clouds would block out sunlight. The reduced level of sunlight would lower the surface temperature of the planet and reduce photosynthesis by plants and bacteria. The reduction in photosynthesis would disrupt the food chain, causing mass extinction of life (including humans). This scenario is similar to the asteroid hypothesis that has been proposed to explain the extinction of the dinosaurs. Proponents of the nuclear-winter scenario pointed to the clouds of dust and debris that traveled far across the planet after the volcanic eruptions of Mount St. Helens in the United States and Mount Pinatubo in the Philippines.
Nuclear weapons have incredible, long-term destructive power that travels far beyond the original target. This is why the world's governments are trying to control the spread of nuclear-bomb-making technology and materials and reduce the arsenal of nuclear weapons deployed during the Cold War. It's also why nuclear tests conducted by North Korea and other countries draw such a strong response from the international community. The Hiroshima and Nagasaki bombings may be many decades past, but the horrible images of that fateful August morning burn as clear and bright as ever.