Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






Concepts of the universe – an historical survey

One of the major themes running throughout Reason in Revolt is the infinite. Woods repeats many times, claiming the support of dialectical materialism, that the universe is infinite in space and time: “Dialectical materialism conceives of the universe as infinite.” (p189)

“From the standpoint of dialectical materialism,” Woods intones, it is “arrant nonsense” to talk about the beginning of time or the creation of matter:

“Time, space and motion are the mode of existence of matter, which can

neither be created nor destroyed. The universe has existed for all time.”

(pp198-9)

Is it true that dialectical materialism conceives of the universe as infinite in time and space? Is it a materialist claim? Is it a dialectical claim?

The view that the universe is infinite in time and space may strike many people as a perfectly natural one. This concept has developed over the last five hundred years and should be understood in its historical development. It is a view that arises from definite historical and social conditions.

The Big Bang theory may well seem contrary to common sense to many readers. If we start from the very beginning – with the ancient Greek philosophers from whom so much has been learnt, even by modern scientists – we will find the answer to why science has taken this plunge into what appears on the surface to be an assertion that something can come out of ‘nothing’: that the universe – all its matter and energy, time and space – can emerge from the Big Bang. We will also discover the real material basis on which science establishes the origins of our universe, and the ancient dialectical concepts which proved so perceptive.

But first, a few remarks on what is meant by ‘universe’ and ‘infinity’.

 

One universe or many?

Firstly, what does Woods mean by the ‘universe’? When we say “the world” we may mean one of two things. We may mean the entire universe, or we may be referring to the earth. But what precisely do we mean by the ‘entire universe’? No one imagined galaxies beyond our own, let alone universes, until a remarkable eighteenth century German philosopher suggested that there were other “island universes”.

This philosopher was Immanuel Kant, who was later to reintroduce the ancient Greek concept of dialectics into modern philosophy. In the late nineteenth century Engels enthusiastically praised Kant’s foresight and, in time, island universes were discovered by powerful telescopes, and termed ‘galaxies’. By the 1920s, the very great distances of some of these galaxies from our own galaxy had been measured.

After Einstein overturned Newtonian physics and especially with the advent of the Big Bang theory of the origins of the universe, it became possible to conceive of universes outside of our own, leading to various concepts of a multiverse or meta-universe – a set of universes which are speculated to arise in various ways. So now, when we say ‘the universe’ we may not mean everything that exists, but only ‘our universe’ as opposed to possible other universes. To most physicists the term ‘the universe’ tends to refer to our universe, the universe we can observe. The Astronomer Royal, Martin Rees, who adopts the term “our universe” in this way, writes:



“What’s conventionally called ‘the universe’ could be just one member of an ensemble. Countless others may exist in which the laws [of physics] are different…”

“This new concept is, potentially, as drastic an enlargement of our cosmic perspective as the shift from pre-Copernican ideas to the realisation that the Earth is orbiting a typical star on the edge of the Milky Way, itself just one galaxy among countless others...

Immanuel Kant (1724-1804), son of a German craftsman, introduced dialectics into modern philosophy

 

 

“The big bang that triggered our entire universe is, in this grander

perspective, an infinitesimal part of an elaborate structure that extends

far beyond the range of any telescope.”

Rees, Before the Beginning, Our universe and others, p3-4)

Our universe appears to have had a hot, dense origin popularly known as the Big Bang. It does not exclude the possibility of other universes beyond our own. Scientists speculate about a substratum, as we term it here, from which universes might naturally arise. For instance, some envisage universes budding off from a quantum substratum like bubbles budding off from foam. But in modern science neither our universe, nor a multiverse consisting of many universes, is compatible with the old Newtonian universe defended by Woods.

For many scientists today, one significant element of our universe is the special physical attributes of atomic particles and forces of which it is comprised: “The entire physical world,” says Rees, referring to our universe, “is essentially determined by a few basic ‘constants’: the masses of some so-called elementary particles, the strength of the forces – electric, nuclear and gravitational – that bind them together and govern their motions.” (Rees, Before the Beginning, p236)

But if these forces were only marginally different the universe that we know would be a physical impossibility. Yet we do not know whether these forces are the only possible combination of constants – maybe there are many other possible variations, producing many other types of universe, beyond our own, which are hardly conceivable to us today.

In our universe the known physical laws appear to apply universally, and the space, time, matter and energy of our universe are bound together. Scientists often use the term space-time, meaning, in a special sense, that time and space together can be treated as a single phenomenon. This discovery was based on Einstein’s theory of relatively, which also showed that mass and energy are linked. For instance, when an atomic bomb explodes a small amount of enriched uranium is converted into a massive amount of energy, a dreadful demonstration of the truth of Einstein’s theory.

In Newton’s universe, space and time have an absolute existence of their own, independent of each other and of matter. Einstein showed that if the mass of our universe exceeded a certain amount, the gravity of the universe would cause space-time to bend until the universe became ‘closed’ like a sphere (which has three dimensions), but in the four dimensions of space-time (which is not easily conceived by us). By closed, we roughly mean that

anyone travelling in the universe in what appears to be a straight line could eventually find themselves back at their starting point, as if we were ants scurrying around the inside wall of a gigantic football.

 

 


Date: 2015-01-11; view: 940


<== previous page | next page ==>
A fundamental law of dialectics: truth is concrete | Diagram 1: Space is bent around a massive object such as a star
doclecture.net - lectures - 2014-2024 year. Copyright infringement or personal data (0.007 sec.)