Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






Authors’ contributions

Writing paper: P.M., R.B. Revising paper: both authors


 


Acknowledgements

We acknowledge our mentors and students who have taught us everything we know and inspired us to learn even more.

 

 

Declaration of interest

In the last 5 yr P.M. has received an honorarium from Pulsion Medical, manufacture of the PiCCO haemodynamic device for a lecture delivered at an international Critical Care Symposium (about 1000 GBP) and an honorarium from Cheetah Medical, manufacturer of the NiCOM haemodynamic device for a lecture delivered at medical grand rounds (about 1500 GBP). R.B. has no conflicts of interest to declare.

 

References

1. Cosnett JE. The origins of intravenous fluid therapy. Lancet

1989; 1: 768–71

2. MacGillivray N. Dr Latta of Leith: pioneer in the treatment of cholera by intravenous saline infusion. J R Coll Physicians Edinb 2006; 36: 80–5

3. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed ther- apy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368–77

4. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen satur- ation as goals of early sepsis therapy: a randomized clinical trial. JAMA 2010; 303: 739–46

5. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Cam- paign guidelines for management of severe sepsis and sep- tic shock. Crit Care Med 2004; 32: 858–73

6. Dellinger RP, Levy MM, Carlet JM, et al. Surviving sepsis Cam- paign: International guidelines for management of severe sepsis and septic shock. 2008. Crit Care Med 2008; 36: 296–327

7. Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: International Guidelines for Management of Se- vere Sepsis and Septic Shock. 2012. Crit Care Med 2013; 41: 580–637

8. Yealy DM, Kellum JA, Huang DT, et al. A Randomized trial of protocol-based care for early septic shock. N Engl J Med 2014; 370: 1683–93

9. Peake SL, Delasney A, Bailey M, et al. Goal-directed resuscita- tion for patients with Early Septic Shock. N Engl J Med 2014; 371: 1496–506

10. Mouncey PR, Osborn TM, Power S, et al. Trial of early, goal- directed resuscitation for septic shock. N Engl J Med 2015; 372: 1301–11

11. Angus DC, Barnato AE, Bell D, et al. A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe investigators. Intensive Care Med 2015; 41: 1549–60

12. Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock-part I: physiology. Crit Care Med 2013; 41: 250–7

13. Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 1955; 35: 123–9

14. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiol 2008; 108: 735–48

15. Peters J, Mack GW, Lister G. The importance of the peripheral circulation in critical illnesses. Intensive Care Med 2001; 27: 1446–58




16. Applegate RA, Johnston WE, Vinten-Johansen J, Klopfenstein HS, Little WC. Restraining effect of intact pericardium during acute volume loading. Am J Physiol 1992; 262: H1725–33

17. Tyson GS, Maier GW, Olsen CO, Davis JW, Rankin JS. Pericar- dial influences on ventricular filling in the conscious dog. An analysis based on pericardial pressure. Circ Res 1984; 54: 173–84

18. Fragata J, Areias JC. Effects of gradual volume loading on left ventricular diastolic function in dogs: implications for the optimisation of cardiac output. Heart 1996; 75: 352–7

19. Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis. BMC Anesthesiol 2013; 13: 17

20. Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol 2010; 6: 107–15

21. Starling EH. The Linacre Lecture on the Law of the Heart, Given at Cambridge, 1915. London: Longmans, 1918; 27

22. Marik PE. The physiology of volume resuscitation. Curr Anesthesiol Rep 2014; 4: 353–9

23. Cecconi M, Aya HD, Geisen M, et al. Changes in the mean sys- temic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med 2013; 39: 1299–305

24. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid ther- apy. Br J Anaesth 2012; 108: 384–94

25. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, func- tions, and visualization. Pugers Archiv - Eur J Physiol 2007; 454: 345–59

26. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 2010; 87: 198–210

27. Jacob M, Chappell D, Rehm M. The ‘third space’–fact or fic- tion? Best Practice & Research. Clinical Anaesthesiology. 2009; 23: 145–57

28. Ueda S, Nishio K, Akai Y, et al. Prognostic value of increased plasma levels of brain natriuretic peptide in patients with septic shock. Shock 2006; 26: 134–9

29. Zhang Z, Zhang Z, Xue Y, Xu X, Ni H. Prognostic value of B-type natriuretic peptide (BNP) and its potential role in guiding fluid therapy in critically ill septic patients. Scand J Trauma Resus Emerg Med 2012; 20: 86

30. Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 2005; 289: H1993–99

31. Berg S, Golster M, Lisander B. Albumin extravasation and tis- sue washout of hyaluronan after plasma volume expansion with crystalloid or hypooncotic colloid solutions. Acta Anaesthesiol Scand 2002; 46: 166–72

32. Bruegger D, Schwartz L, Chappell D, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off- pump coronary artery bypass surgery. Basic Res Cardiol 2011; 106: 1111–21

33. Atchison DJ, Johnston MG. Atrial natriuretic peptide attenu- ates flow in an isolated lymph duct preparation. Eur J Physiol 1996; 431: 618–24

34. Anderson WD, Kulik TJ, Mayer JE, Anderson WD, Kulik TJ, Mayer JE. Inhibition of contraction of isolated lymphatic ducts by atrial natriuretic peptide. Am J Physiol 1991; 260: R610–4


 


35. Ohhashi T, Watanabe N, Kawai Y, Ohhashi T, Watanabe N, Kawai Y. Effects of atrial natriuretic peptide on isolated bo- vine mesenteric lymph vessels. Am J Physiol 1990; 259: H42–7

36. Landry DW, Oliver JA. Pathogenesis of vasodilatory shock. N Engl J Med 2001; 345: 588–95

37. Ait-Oufella H, Maury E, Lehoux S, Guidet B, Offenstadt G. The endothelium: physiological functions and role in microcir- culatory failure during severe sepsis. Intensive Care Med 2010; 36: 1286–98

38. Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL. Broken barriers: a new take on sepsis pathogenesis. Sci Translation Med 2011; 3: 88ps25

39. Hernandez G, Bruhn A, Ince C. Microcirculation in sepsis: new perspectives. Curr Vasc Pharm 2013; 11: 161–9

40. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002; 166: 98–104

41. Trzeciak S, Rivers E. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care 2005; 9 (suppl 4): S20–6

42. Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100: 483–90

43. Sanfilippo F, Corredor C, Fletcher N, et al. Diastolic dysfunc- tion and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med 2015; 41: 1004–13

44. Landesberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 2012; 33: 895–903

45. Brown SM, Pittman JE, Hirshberg EL, et al. Diastolic dysfunc- tion and mortality in early severe sepsis and septic shock: a prospective, observational echocardiography study. Crit Ultrasound J 2012; 4:8

46. Cheitlin MD. Cardiovascular physiology-changes with aging. Am J Geriatr Cardiol 2003; 12: 9–13

47. Pieske B, Wachter R. Impact of diabetes and hypertension on the heart. Curr Opin Cardiol 2008; 23: 340–9

48. Russo C, Jin Z, Homma S, et al. Effect of obesity and over- weight on left ventricular diastolic function: a community- based study in an elderly cohort. J Am Coll Cardiol 2011; 57: 1368–74

49. Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE. Depressed left ventricular performance: response to volume infusion in patients with sepsis and septic shock. Chest 1988; 93: 903–10

50. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Crit Care 2011; 1:1

51. Marik PE, Lemson J. Fluid responsiveness: An evolution of our understanding. Br J Anaesth 2014; 112: 620–2

52. Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 2014; 10: 37–47

53. Hilton AK, Bellomo R. A critique of fluid bolus resuscitation in severe sepsis. Crit Care 2012; 16: 302

54. Marik PE, Cavallazzi R. Does the Central Venous Pressure (CVP) predict fluid responsiveness: An update meta-analysis and a plea for some common sense. Crit Care Med 2013; 41: 1774–81

55. Biais M, Ehrmann S, Mari A, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care 2014; 18: 587

56. Cannesson M, Le MY, Hofer CK, et al. Assessing the diagnos- tic accuracy of pulse pressure variations for the prediction of


fluid responsiveness: a “gray zone” approach. Anesthesiol

2011; 115: 231–41

57. Vincent JL, Pelosi P, Pearse R, et al. Perioperative cardiovascu- lar monitoring of high-risk patients: a consensus of 12. Crit Care 2015; 19: 224

58. Wilms H, Mittal A, Haydock MD, van den Heever M, Devaud M, Windsor JA. A systematic review of goal directed fluid therapy: Rating of evidence for goals and monitoring methods. J Crit Care 2014; 29: 204–9

59. Hollenberg SM, Ahrens TS, Annane D, et al. Practice para- meters for hemodynamic support of sepsis in adult pa- tients: 2004 update. Crit Care Med 2004; 32: 1928–48

60. Smith B, Phillips R, Madigan V, West M. Decreased mortality, morbidity and emergency transport in septic shock: A new protocol based on advanced noninvasive haemodynamics and early antibiotics [abstract]. Crit Care Med 2013; 40: 1–17

61. Mallat J, Meddour M, Durville E, et al. Mini-fluid challenge in patients with low-volume mechanical ventilation: the de- crease in pulse pressure and stroke volume variations accur- ately predicts fluid responsiveness. Br J Anaesth 2015; 115: 449–56

62. Lammi MR, Aiello B, Burg GT, et al. Response to fluid boluses in the fluid and catheter treatment trial. Chest Advance Ac- cess published on May 28, 2015. doi: 10.1378/chest.15-0445

63. Chowdhury AH, Cox EF, Francis S, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 2012; 256: 18–24

64. Sanchez M, Jimenez-Lendinez M, Cidoncha M, et al. Com- parison of fluid compartments and fluid responsiveness in septic and non-septic patients. Anaesth Intensive Care 2011; 39: 1022–9

65. Bark BP, Oberg CM, Grande PO. Plasma volume expansion by 0.9% NaCl during sepsis/systemic inflammatory response syndrome, after hemorrhage, and during a normal state. Shock 2013; 40: 59–64

66. Nunes T, Ladeira R, Bafi A, de Azevedo L, Machado F, Freitas F. Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation. Ann Intensive Care 2014; 4: 25

67. Glassford NJ, Eastwood GM, Bellomo R. Physiological changes after fluid bolus therapy in sepsis: a systematic re- view of contemporary data. Crit Care 2014; 18: 2557

68. Wioedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354: 2564–75

69. Monge-Garcia MI, Gonzalez PG, Romero MG, et al. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med 2015; 41: 1247–55

70. Pierrakos C, Velissaris D, Scolletta S, Heenen S, De BD, Vincent JL. Can changes in arterial pressure be used to de- tect changes in cardiac index during fluid challenge in pa- tients with septic shock? Intensive Care Med 2012; 38: 422–8

71. Monnet X, Chemla D, Osman D, et al. Measuring aortic diam- eter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Crit Care Med 2007; 35: 477–82

72. Surviving Sepsis Campaign; 6 hour bundle revised. http:// www.survivingsepsis.org/News/Pages/SSC-Six-Hour-Bundle- Revised.aspx 2015. (Acessed 4-9-2015)

73. Marik PE. Iatrogenic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care 2014; 4: 21

74. Hayes MA, Timmins AC, Yau E, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the


 


treatment of critically ill patients. N Engl J Med 1994; 330: 1717–22

75. Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid!. Crit Care 2015; 19: 18

76. Marik PE. Fluid therapy in 2015 and beyond: The mini-fluid challenge and mini-fluid bolus approach. Br J Anaesth 2015; 115: 347–9

77. Monnet X, Teboul JL. Passive leg raising. Intensive Care Med

2008; 34: 659–63

78. Teboul JL, Monnet X. Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care 2008; 14: 334–9

79. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G. Changes in BP induced by passive leg raising pre- dict response to fluid loading in critically ill patients. Chest 2002; 121: 1245–52

80. Monnet X, Rienzo M, Osman D, et al. Passive leg raising pre- dicts fluid responsiveness in the critically ill. Crit Care Med 2006; 34: 1402–7

81. Cavallaro F, Sandroni C, Marano C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med 2010; 36: 1475–83

82. Wetterslev M, Haase N, Johansen RR, Perner A. Predicting fluid responsiveness with transthoracic echocardiography is not yet evidence based. Acta Anaesthesiol Scand 2013; 57: 692–7

83. Muller L, Bobbia X, Toumi M, et al. Respiratory variations of inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care 2012; 16: R188

84. Juhl-Olsen P, Vistisen ST, Christiansen LK, Rasmussen LA, Frederiksen CA, Sloth E. Ultrasound of the inferior vena cava does not predict hemodynamic response to early hem- orrhage. J Emerg Med 2013; 45: 592–7

85. Corl K, Napoli AM, Gardiner F. Bedside sonographic measurement of the inferior vena cava caval index is a poor predictor of fluid responsiveness in emergency department patients. Emergency Medicine Australasia 2012; 24: 534–9

86. Ibarra-Estrada MA, Lopez-Pulgarin JA, Mijangos-Mendez JC, Diaz-Gomez JL, Aguirre-Avalos G. Variation in carotid peak systolic velocity predicts volume responsiveness in mech- anically ventilated patients with septic shock: A prospective cohort study. Crit Ultrasound J 2015; 7: 12

87. Saugel B, Ringmaier S, Holzapfel K, et al. Physical examin- ation, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: A pro- spective trial. J Crit Care 2011; 26: 402–10

88. NQF #0500. Severe Sepsis and Septic Shock: management Bundle, January 5 2015, update. www.qualityforum.org. 2015. National Quality Forum. (Acessed 15 May 2015)

89. Akobeng AK. Understanding diagnostic tests 3: Receiver op- erating characteristic curves. Acta Paediatrica 2007; 96: 644–7

90. Fischer JE, Bachmann LM, Jaeschke R. A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med 2003; 29: 1043–51

91. Marik PE, Baram M, Vahid B. Does the central venous pres- sure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134: 172–8

92. Song Y, Kwak YL, Song JW, Kim YJ, Shim JK. Respirophasic carotid artery peak velocity variation as a predictor of fluid


responsiveness in mechanically ventilated patients with coronary artery disease. Br J Anaesth 2014; 113: 61–6

93. Marik PE, Levitov A, Young A, Andrews L. The use of NICOM (Bioreactance) and Carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest 2013; 143: 364–70

94. Krafft P, Steltzer H, Hiesmayr M, Klimscha W, Hammerle AF. Mixed venous oxygen saturation in critically ill septic shock patients. The role of defined events. Chest 1993; 103: 900–6

95. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013; 369: 840–51

96. Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter study of central venous oxygen sat- uration (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med 2010; 55: 40–6

97. Burton TM. New therapy for sepsis infection raises hope but many questions (lead article). The Wall Street Journal August 14th, 2008. New York, NY, Dow Jone and Company, Inc. (Acessed 14 August 2008)

98. Marik PE. The demise of early goal-directed therapy for se- vere sepsis and septic shock. Acta Anaesthesiol Scand 2015; 59: 561–7

99. Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hy- perlactatemia. Crit Care 2014; 18: 503

100. Hotchkiss RS, Karl IE. Reevaluation of the role of cellular hypoxia and bioenergetics failure in sepsis. JAMA 1992; 267: 1503–10

101. James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999; 354: 505–8

102. James JH, Fang CH, Schrantz SJ, Hasselgren PO, Paul RJ, Fischer JE. Linkage of aerobic glycolysis to sodium-potas- sium transport in rat skeletal muscle. Implications for in- creased muscle lactate production in sepsis. J Clin Invest 1996; 98: 2388–97

103. Uehara M, Plank LD, Hill GL. Components of energy expend- iture in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med 1999; 27: 1295–302

104. Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med 1993; 21: 1012–9

105. Subramaniam A, McPhee M, Nagappan R. Predicting energy expenditure in sepsis: Harris-Benedict and Schofield equa- tions versus the Weir derivation. Crit Care Resus 2012; 14: 202–10

106. Marik PE, Sibbald WJ. Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 1993; 269: 3024–9

107. Marik PE, Bellomo R. Lactate clearance as a target of therapy in sepsis: a flawed paradigm. OA Critical Care 2013; 1:3

108. Ronco JJ, Fenwick JC, Tweeddale MG, et al. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA 1993; 270: 1724–30

109. Brandt S, Regueira T, Bracht H, et al. Effect of fluid resuscita- tion on mortality and organ function in experimental sepsis models. Crit Care 2009; 13: R186

110. Rehberg S, Yamamoto Y, Sousse L, et al. Selective V(1a) agon- ism attenuates vascular dysfunction and fluid accumula- tion in ovine severe sepsis. Am J Physiol Heart Circ Physiol 2012; 303: H1245–54


 


111. Rosenberg AL, Dechert RE, Park PK, Bartlett RH. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J Intensive Care Med 2009; 24: 35–46

112. Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European inten- sive care units: results of the SOAP study. Crit Care Med 2006; 34: 344–53

113. Alsous F, Khamiees M, DeGirolamo A, moateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest 2000; 117: 1749–54

114. Murphy CV, Schramm GE, Doherty JA, et al. The importance of fluid management in acute lung injury secondary to sep- tic shock. Chest 2009; 136: 102–9

115. Chung FT, Lin SM, Lin SY, Lin HC. Impact of extravascular lung water index on outcomes of severe sepsis patients in a medical intensive care unit. Respiratory Medicine 2008; 102: 956–61

116. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 2008; 12: R74

117. Bouchard J, Soroko SB, Chertow GM, et al. Fluid accumula- tion, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 2009; 76: 422–7

118. Micek SC, McEnvoy C, McKenzie M, Hampton N, Doherty JA, Kollef MH. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Crit Care 2013; 17: R246

119. Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure increase mortality. Crit Care Med 2011; 39: 259–65

120. Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care 2015; 19: 251

121. Maitland K, Kiguli S, Opoka RO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med 2011; 364: 2483–95

122. Jansen TC, van BJ, Schoonderbeek FJ, et al. Early lactate- guided therapy in intensive care unit patients: a multicen- ter, open-label, randomized controlled trial. Am J Respir Crit Care Med 2010; 182: 752–61

123. Maitland K, George EC, Evans JA, et al. Exploring mechan- isms of excess mortality with early fluid resuscitation: insights from the FEAST trial. BMC Medicine 2013; 11: 68

124. Marik PE. Early management of severe sepsis: Current con- cepts and controversies. Chest 2014; 145: 1407–18

125. Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiol 1999; 90: 1265–70

126. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Etiology of metabolic acidosis during saline resuscitation in endotoxe- mia. Shock 1998; 9: 364–8

127. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 2001; 93: 817–22

128. Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab) normal saline and physiological Hartmann’s solution: a ran- domized double-blind crossover study. Clinical Science 2003; 104: 17–24


129. Mohd Yunos N, Bellomo R, Hegarty C, Stoty D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrict- ive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 2012; 308: 1566–72

130. Raghunathan K, Shaw A, Nathanson B, et al. Association between the choice of IV crystalloid and in-hospital mortal- ity among critically ill adults with sepsis. Crit Care Med 2014; 42: 1585–91

131. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.4 versus Ringers Acetate in severe sepsis. N Engl J Med 2012; 367: 124–34

132. Haase N, Perner A, Hennings LI, et al. Hydroxyethyl starch 130/0.38–0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. Br Med J 2013; 346: f839

133. Kirkpatrick AW, Roberts DJ, De WJ, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med 2013; 39: 1190–206

134. Malbrain ML, Marik PE, Witters I, et al. De-resuscitation in the critically ill: What, why, when and how? Results of a meta-analysis and systematic review on the impact of fluid overload on morbidity and mortality. Anesthesiology Intensive Therapy 2014; 46: 361–80

135. Asfar P, Meziani F, Hamel JF, et al. High versus low blood- pressure target in patients with septic shock. N Engl J Med 2014; 370: 1583–93

136. Monnet X, Jabot J, Maizel J, Richard C, Teboul JL. Norepineph- rine increases cardiac preload and reduces preload depend- ency assessed by passive leg raising in septic shock patients. Crit Care Med 2011; 39: 689–94

137. Datta P, Magder S. Hemodynamic response to norepineph- rine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Respir Crit Care Med 1999; 160: 1987–93

138. Persichini R, Silva S, Teboul JL, et al. Effects of norepineph- rine on mean systemic pressure and venous return in human septic shock. Crit Care Med 2012; 40: 3146–53

139. Kozieras J, Thuemer O, Sakka SG. Influence of an acute in- crease in systemic vascular resistance on transpulmonary thermodilution-derived parameters in critically ill patients. Intensive Care Med 2007; 33: 1619–23

140. Hamzaoui O, Georger JF, Monnet X, et al. Early administra- tion of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypo- tension. Crit Care 2010; 14: R142

141. Abid O, Akca S, Haji-Michael P, Vincent JL. Strong vasopres- sor support may be futile in the intensive care unit patient with multiple organ failure. Crit Care Med 2000; 28: 947–9

142. Di Giantomasso D, May CN, Bellomo R. Norepinephrine and vital organ blood flow during experimental hyperdynamic sepsis. Intensive Care Med 2003; 29: 1774–81

143. Di Giantomasso D, Morimatsu H, May CN, Bellomo R. Intrar- enal blood flow distribution in hyperdynamic septic shock: Effect of norepinephrine. Crit Care Med 2003; 31: 2509–13

144. Jhanji S, Stirling S, Patel N, Hinds CJ, Pearse RM. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med 2009; 37: 1961–6

145. Hayes MA, Yau EH, Hinds CJ, Watson JD. Symmetrical peripheral gangrene: association with noradrenaline ad- ministration. Intensive Care Med 1992; 18: 433–6


 


146. Dunser MW, Mayr AJ, Tur A, et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med 2003; 31: 1394–8

147. Anantasit N, Boyd JH, Walley KR, Russell JA. Serious adverse events associated with vasopressin and norepin- ephrine infusion in septic shock. Crit Care Med 2014; 42: 1812–20

148. Hotchkiss RS, Levy JH, Levi M. Sepsis-induced disseminated intravascular coagulation, symmetrical peripheral gan- grene, and amputations. Crit Care Med 2013; 41: e290–1

149. Cardenas-Garcia J, Schaub KF, Belchikov YG, Narasimhan M, Koenig SJ, Mayo PH. Safety of peripheral intravenous admin- istration of vasoactive medication. J Hosp Med 2015; 10: 581–5

150. Ducrocq N, Kimmoun A, Furmaniuk A, et al. Comparison of equipressor doses of norepinephrine, epinephrine,


and phenylephrine on septic myocardial dysfunction.

Anesthesiol 2012; 116: 1083–91

151. Minneci PC, Deans KJ, Banks SM, et al. Differing effects of epinephrine, norepinephrine, and vasopressin on survival in a canine model of septic shock. Am J Physiol Heart Circ Physiol 2004; 287: H2545–54

152. Vasu TS, Cavallazzi R, Hirani A, Kaplan G, Marik PE. Norepin- ephrine or dopamine for septic shock: A systematic review of randomized clinical trials. J Intensive Care Med 2011; 27: 172–8

153. De Baker D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: A meta- analysis. Crit Care Med 2011; 40: 725–30

154. Fawzy A, Evans SR, Walkey AJ. Practice patterns and out- comes associated with choice of initial vasopressor therapy for septic shock. Crit Care Med 2015; 43: 2141–6

 

Handling editor: J. G. Hardman


Date: 2016-04-22; view: 921


<== previous page | next page ==>
Resuscitation strategy | Requirements for a Scientific Theory of Innovation
doclecture.net - lectures - 2014-2024 year. Copyright infringement or personal data (0.018 sec.)