Home Random Page


CATEGORIES:

BiologyChemistryConstructionCultureEcologyEconomyElectronicsFinanceGeographyHistoryInformaticsLawMathematicsMechanicsMedicineOtherPedagogyPhilosophyPhysicsPolicyPsychologySociologySportTourism






List of contributors

 

Igor L. Bashmachnikov Nansen Environmental and Remote Sensing Center

(NERSC), Bergen, Norway/St. Petersburg State University (SpbSU), St. Petersburg Russia.

E-mail: igor.bashmachnikov@horta.uac.pt

Leonid P. Bobylev Nansen International Environmental and Remote

Sensing Centre (NIERSC), St. Petersburg, Russia. E-mail: leonid.bobylev@niersc.spb.ru

Valentina A. Brizgalo Arctic and Antarctic Research Institute (AARI), St.

Petersburg, Russia. E-mail: brizgalo@aari.nw.ru

Vladimir V. Chernook Polar Institute of Fishery and Oceanography

(PINRO), Murmansk, Russia.

E-mail: chernook@pinro.murmansk.ru

Vladimir V. Denisov Murmansk Marine Biological Institute (MMBI),

Russian Academy of Sciences (RAS), Murmansk, Russia.

E-mail: denisov@mmbi.info

Vladislav K. Donchenko Scientific Research Centre for Ecological Safety

(SRCES), Russian Academy of Sciences (RAS), St. Petersburg, Russia.

E-mail: donchenkovk@mail.ru

Pavel V. Druzhinin Institute of Economics (IE), Karelian Research

Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, Russia.

E-mail: pdruzhinin@mail.ru


 

Geir Evensen Nansen Environmental and Remote Sensing Center

(NERSC), Bergen, Norway.

E-mail: Geir.Evensen@hydro.com

Nikolai N. Filatov Northern Water Problems Institute (NWPI), Karelian

Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, Russia.

E-mail: nfilatov@ nwpi.krc.karelia.ru

Andrei N. Filatov Scientific Research Centre for Ecological Safety

(SRCES), Russian Academy of Sciences (RAS), St. Petersburg, Russia.

E-mail: an_fil@mail.ru

Jury I. Ingebeikin Institute of Ecological Problems of the North (IEPN),

Russian Academy of Sciences (RAS), Archangelsk, Russia.

E-mail: ocean@pomor.su.ru

Vladimir V. Ivanov Arctic and Antarctic Research Institute (AARI), St.

Petersburg, Russia.

E-mail: ivanov@aari.nw.ru

Ola M. Johannessen Nansen Environmental and Remote Sensing Center

(NERSC)/Mohn-Sverdrup Center for Global Ocean Studies and Operational Oceanography (MSC)/ Geophysical Institute, University of Bergen, Norway. E-mail: ola.johannessen@nersc.no

Seppo Kaitala Finnish Institute of Marine Research (FIMR),

Helsinki, Finland.

E-mail: seppo.kaitala@fimr.fi

Anton A. Korosov Nansen International Environmental and Remote

Sensing Centre (NIERSC), St. Petersburg, Russia. E-mail: anton.korosov@niersc.spb.ru

Jury V. Krasnov Murmansk Marine Biological Institute (MMBI),

Russian Academy of Sciences (RAS), Murmansk, Russia.

E-mail: krasnov@mmbi.info

Harri Kuosa Finnish Institute of Marine Research (FIMR), Helsinki, Finland. E-mail: kuosa@fimr.fi

Aleksander V. Leonov Institute of Oceanology (IO), Russian Academy of

Sciences (RAS), Moscow, Russia. E-mail: leonov@sio.rssi.ru

Aleksander V. Litvinenko Northern Water Problems Institute (NWPI), Karelian

Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, Russia.

E-mail: litvinenko@nwpi.krc.karelia.ru


List of contributors xvii



 

P. R. Makarevich Murmansk Marine Biological Institute (MMBI),

Russian Academy of Sciences (RAS), Murmansk, Russia.

E-mail: makarevich@mmbi.info

Martin W. Miles Bjerknes Center for Climate Research (BCCR),

Bergen, Norway/Environmental Systems Analysis Research Center (ESARC), Boulder, USA.

E-mail: martin.miles@esarc-colorado.org

Vladimir V. Melentyev Nansen International Environmental and Remote

Sensing Centre (NIERSC), St. Petersburg, Russia. E-mail: vladimir.melentyev@niersc.spb.ru

Larisa E. Nazarova Northern Water Problems Institute (NWPI), Karelian

Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, Russia.

E-mail: nazarova@nwpi.krc.karelia.ru

Ivan A. Neelov Arctic and Antarctic Research Institute (AARI)/

Nansen International Environmental and Remote Sensing Centre (NIERSC), St. Petersburg, Russia.

E-mail: neelov@aari.nw.ru

Lasse H. Pettersson Nansen Environmental and Remote Sensing Center

(NERSC), Bergen, Norway.

E-mail: lasse.pettersson@nersc.no

Dmitry V. Pozdnyakov Nansen International Environmental and Remote

Sensing Centre (NIERSC), St. Petersburg, Russia. E-mail: dmitry.pozdnyakov@niersc.spb.ru

Viktor V. Rastoskuev Scientific Research Centre for Ecological Safety

(SRCES), Russian Academy of Sciences (RAS), St. Petersburg, Russia. E-mail: v.rastoskuev@rambler.ru

Jury A. Salo Northern Water Problems Institute (NWPI), Karelian

Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, Russia.

E-mail: salo@nwpi.krc.karelia.ru

Oleg P. Savchuk Department of Systems Ecology, University of

Stockholm, Sweden/State Institute of Oceanology (SOI), St. Petersburg, Russia.

E-mail: oleg@system.ecology.su.se

Elena V. Shalina Scientific Research Centre for Ecological Safety

(SRCES), Russian Academy of Sciences (RAS), St. Petersburg, Russia.

E-mail: v.rastoskuev@rambler.ru


 

Anatoly A. Shavykin Murmansk Marine Biological Institute (MMBI),

Russian Academy of Sciences (RAS), Murmansk, Russia.

E-mail: anatoli.shavykin@mail.ru

Tapani Stipa Finnish Institute of Marine Research (FIMR),

Helsinki, Finland.

E-mail: tapani.stipa@fimr.fi

Alexei N. Stuliy Nansen Environmental and Remote Sensing Center

(NERSC), Bergen, Norway.

E-mail: alexei.stuliy@unis.no

Arkady Ju. Terzhevik Northern Water Problems Institute (NWPI), Karelian

Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, Russia.

E-mail: ark@nwpi.krc.karelia.ru

Alexey V. Tolstikov Northern Water Problems Institute (NWPI), Karelian

Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, Russia.

E-mail: tolstikov@nwpi.krc.karelia.ru

Vladimir A. Volkov Nansen International Environmental and Remote

Sensing Centre (NIERSC), St. Petersburg, Russia. E-mail: vladimir.volkov@niersc.spb.ru

Roman E. Zdorovennov Northern Water Problems Institute (NWPI), Karelian

Research Centre (KRC), Russian Academy of Sciences (RAS), Petrozavodsk, Russia.

E-mail: romga@nwpi.krc.karelia.ru


 

 

Acknowledgements

 

This book has been based primarily on the results obtained during the European Commission (EC) 5th Framework Programme (FP5) INCO-Copernicus project

Sustainable Management of the Marine Ecosystem and Living Resources of the White Sea - WHITESEA (contract no. ICA2-CT-2000-10014). The project was coordinated by Prof. Ola M. Johannessen, with Lasse H. Pettersson as deputy coordinator. The project consortium consisted of the Nansen Environmental and Remote Sensing Center (coordinator), Bergen, Norway; Finnish Institute for Marine Research, Helsinki; Nansen International Environmental and Remote Sensing Centre and Scientific Research Centre for Ecological Safety, Russian Academy of Sciences, St. Petersburg, Russia; Northern Water Problems Institute, Petrozavodsk, Karelia, Russia; and Murmansk Marine Biological Institute, Murmansk, Russia. The above project participants acknowledge the financial support received from the European Commission.

The compilation, writing and editing of the book has also been supported by the EC FP5 EcoMon project (INCO-CT-2004-003605) as well as a Nordic network grant from the Nordic Council of Ministers, administrated through the Research Council of Norway and the Mohn-Sverdrup Center for Global Ocean Studies and Operational Oceanography (MSC) at the Nansen Center in Bergen. Dr. Igor Bashmachnikov acknowledges his NATO Science Grant for his one-year work at NERSC.

Additionally, included are the research results obtained by the Zoological Institute, Russian Academy of Sciences, and the Arctic and Antarctic Research Institute and Northern Hydrometeorological Service, Russian Federation, under the program of basic studies launched by the Russian Academy of Sciences and Russian Federation program World Ocean: Seas of the USSR .

The new digitized bathymetric map of the White Sea presented in Chapter 1 has been purchased from TRANSAS (TRANsport SAfety Systems) electronic tech- nologies company, St. Petersburg. The authors of Chapter 3 thank Dr. S. I. Kuzmina


xx Acknowledgements

 

for kindly providing climate simulation data. The authors of Chapter 7 thank Dr. Sh. Baibusinov, Ms. A. E. Kurilo, and Ms. M. V. Belokozova for the provision of socio-economic data for the region.

The authors also express their gratitude to the crew of the R/V Ecolog of the Northern Water Problem Institute, especially to Mr. V. Kovalenko for the excellent organization of research cruises in the White Sea and to Dr. P. Bojarinov, Mr. A. Mitrochov, and Mr. M. Petrov, who took part in these cruises and processed and analyzed collected in situ data, as well as to Prof. A. Buznikov and Mr. A. Elisov for conducting IR-radiometric measurements on board the R/V Ecolog. Additionally the authors thank Drs. E. Lupyan and A. Mazurov from the Space Research Institute of the Russian Academy of Sciences in Moscow for their provision of NOAA data for the White Sea.

The authors extend their gratitude to E. Valikhan and O. Kislova for the translation of parts of the manuscript from Russian to English, to Mr. L .V. Zaitzev, V. Kekkonen, and Ju. Rozanova for their valuable technical assistance, as well as to Mr. I. Yu. Georgievsky for providing photos of the White Sea.


 

 

Figures

 

1.1 Map of the White Sea and adjacent land areas, with reference to the main geographic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

1.2 Comparison of the IBCAO and TRANSAS/NIERSC digital bathymetry models for the White Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

1.3 Boundaries of the administrative divisions (oblasts and republics) in the White

Sea catchment (indicated by a dotted line). . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Location of industrial activities within the catchment of the White Sea................ 20

2.2 Location of the study areas and duration of observations of river runoff within

the White Sea catchment................................................................................................ 23

2.3 Long-term variability in the river water runoff into the White Sea...................... 24

2.4 Seasonal variations of the river runoff into the White Sea. . . . . . . . . . . . . . . . . . 25

2.5 (a) Interannual and (b) seasonal variations of the freshwater inflow to the White

Sea due to river water inflow and atmospheric precipitaton contribution........... 28

2.6 Location of the hydrochemical observation stations in the rivers of the White

Sea basin performed under the GON.......................................................................... 31

2.7 Interannual variability in the concentrations of mineral forms of nitrogen and phosphorus in the estuaries encompassed by the White Sea........................................................................................................................... 34

2.8 Seasonal variability of concentrations of mineral forms of nitrogen and phosphorus in the estuaries encompassed by the White Sea........................................................................................................................... 35

2.9 Interannual variability of the concentrations of pollutants in the estuaries encompassed by the White Sea 38

2.10 Interannual variability in mean annual amounts (thousand of tons year-1) of

the most abundant pollutants in the river runoff.................................................... 44

2.11 Seasonal variations of the water and chemical runoff as assessed by averaging

the relevant multi-year data for some rivers............................................................ 46

3.1 Locations of the SWS stations: • = hydrological stations; • = weather stations and sites 54

3.2 Annual cycle of sunshine duration at Kem and Louhi stations............................ 59


3.3 Mean annual air temperature at some weather stations in the White Sea catchment 61

3.4 Fluctuations of near-surface air temperature at the Archangelsk station for 176

years of observations...................................................................................................... 62

3.5 Frequency spectrum of near-surface air temperature at the Archangelsk station during 176 years of observations 62

3.6 Variability of the surface water temperature in the White Sea............................ 63

3.7 Variability of the mean annual water surface temperature in both the Barents

Sea and the White Sea.................................................................................................... 64

3.8 Multi-year series of annual atmospheric precipitation at (a) Kolezhma, (b) Zasheyek, and (c) Louhi stations 65

3.9 Annual dynamics of relative air humidity................................................................ 67

3.10 Spatial distribution of mean air temperature in the White Sea region as observed from 1950-1999, and for simulated future options................................................................................................................... 68

3.11 Observed and modeled time series of the water balance elements for north- western Russia. All values are 15-year moving averages............................................................................................................................. 69

3.12 Time series and linear trend of the total runoff into the White Sea between

1882-1988. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Patterns of major currents in the White Sea.............................................................. 78

4.2 Major water circulation patterns as established by Deriugin and Timonov . . . 79

4.3 Water circulation patterns in the White Sea as established from on board the R/

V Ivan Petrov...................................................................................................................... 80

4.4 System of persistent surface currents in the White Sea.......................................... 81

4.5 Types of water masses in the White Sea as they are displayed along the White

Sea transect, and the T -S diagram................................................................................ 83

4.6 Spatial distribution of water surface temperature fields across the White Sea in different seasons: (a) spring, (b) summer, (c) autumn............................................................................................................................... 84

4.7 Distribution of water masses across the White Sea during spring......................... 85

4.8 A vertical profile of water temperature distribution along the Voronka-Gridino transect 86

4.9 Typical stratified vertical distribution of both water temperature and salinity in Kandalakshskiy Bay during summer 89

4.10 Typical mixed distribution of both water temperature and salinity in the shallow

part of Onegskiy Bay during summer........................................................................ 90

4.11 Seasonal location of the boundaries of river plumes.............................................. 92

4.12 Monthly variations of the location of the tidal front in the White Sea............... 93

4.13 Location of stations at which water temperature is routinely measured in the White Sea 98

4.14 Variability of the water surface temperature in the White Sea (1977-1998) . . . 99

4.15 Surface temperature variations in June-July 1991.................................................... 99

4.16 Variability of both the water temperature near the bottom and sea level near the Kuzovskie Islands (12-15 July, 2000) 102

4.17 Frequency spectra of sea level and water surface temperature variability in Kandalakshskiy Bay 106

4.18 Variability of current speed and direction in the estuary of the Kem River at an

8-m depth (4-7 July, 2000)............................................................................................ 107


 

4.19 Water temperature fluctuations measured at depths ranging between 1 m and  
  10 m in the region of the Kuzovskie Islands during 12-15 July, 2000 . . . . . . . color
4.20 Bays and estuaries in the White Sea Basin used for modeling and verification  
  experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.21 Bathymetry of Onezhskiy Bay and location of sea level tide gauges . . . . . . . .
4.22 Calculated current speed and sea level distributions across Onezhskiy Bay . . .
4.23 Water level variations as obtained from tide-gauge measurements . . . . . . . . .
4.24 Calculated spatial distributions of current speeds and water levels for a single  
  tidal cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.25 Areas of propagation of pollution in the Onezhskiy Bay. . . . . . . . . . . . . . . .
4.26 Location of the plume three tidal cycles after model initiation for minimal and  
  maximal rates of discharge of the Kem River . . . . . . . . . . . . . . . . . . . . . . .
4.27 The mean square of interannual variations of sea level in the White Sea and  
  fractiles of annual water level at a number of stations . . . . . . . . . . . . . . . . .
4.28 Quantile diagrams of maximal, average, and minimal seasonal variabilities of  
  sea level at the Umba station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.29 Fractal diagrams of maximal, average, and minimal seasonal variabilities in sea  
  level at the Onega station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.30 Variations of sea level as assessed by the Darwin method at a number of  
  stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.31 Amplitude and root mean square deviations of the White Sea mean level. . . .
4.32 Storm surge distribution in Dvinskiy Bay and across the White Sea. . . . . . . .
4.33 Frequency spectrum of sea level variations at the Kem-Port and Mudyug  
  stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.34 Types of cyclonic movements over the White Sea from 1902-1965. . . . . . . . .
4.35 Storm-driven surges at some stations in late 1963. . . . . . . . . . . . . . . . . . . . .
4.36 Variations of sea level at some stations . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.37 Spatial distributions of phases and amplitudes for waves K1, M2, and M4. . .
4.38 Spectrum of sea level oscillations as registered at the Onega station . . . . . . . .
4.39 Spatial distributions of phases and amplitudes corresponding to seishes ranging  
  from one to five nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.40 Distribution of the ice cover in the White Sea in February . . . . . . . . . . . . . .
4.41 Distribution of the ice cover in the White Sea in March . . . . . . . . . . . . . . . .
4.42 Distribution of ridged ice zones in the White Sea in March. . . . . . . . . . . . . .
4.43 Monthly mean anomalies of air temperature distribution over the Arctic in  
  March 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.44 Ice cover mapped by the DMSP SSM/I satellite passive microwave sensor on 4  
  March, 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color
4.45 Monthly mean anomalies of air temperature distribution over the Arctic in  
  March 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.46 Ice cover mapped by the DMSP SSM/I satellite passive microwave sensor on 17  
  March, 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

6.1 Retrievals of chl, sm, and doc by the L-M procedure, and comparison with the modeled data 186

6.2 Same as Figure 6.1 but utilizing a NN simulator.................................................. 189

6.3 Flow diagram of the advanced water quality retrieval algorithm for case II waters 190


 

6.4 Location of stations and the determined concentrations of chl in Onezhskiy Bay
6.5 Shipborne measurements of near-surface water temperature in Onezhskiy Bay,  
  10-13 July, 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6 Shipborne measurements of surface salinity in Onezhskiy Bay, 10-13 July, 2001
6.7 SeaDAS-based retrieval of concentration of chl from a SeaWiFS image taken  
  over Onezhskiy Bay in July, 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.8 New tool-based retrieval of concentrations of chl from a SeaWiFS image taken  
  over Onezhskiy Bay in July, 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.9 Same as Figure 6.8 but for the sm concentration . . . . . . . . . . . . . . . . . . . . .
6.10 Same as Figure 6.8 but for the doc concentration . . . . . . . . . . . . . . . . . . . . .
6.11 Spatial distribution of chl in the White Sea as retrieved from a SeaWiFS image  
  of 7 April, 2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.12 Spatial distribution of chl across the White Sea from a SeaWiFS image, 25May,  
  2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.13 Same as Figure 6.11 but for 21 June, 2001. . . . . . . . . . . . . . . . . . . . . . . . . .
6.14 Same as Figure 6.11 but for 28 August, 2001 . . . . . . . . . . . . . . . . . . . . . . . .
6.15 Same as Figure 6.11 but for 2 October, 2001 . . . . . . . . . . . . . . . . . . . . . . . .
6.16 Qualitative comparison between the chl spatial distribution obtained from a  
  SeaWiFS image taken over the White Sea in early May, 2001 and the simulated  
  phytoplankton biomass for the same time period and year . . . . . . . . . . . . . .
6.17 Same as Figure 6.16 but for late June, 2001. . . . . . . . . . . . . . . . . . . . . . . . .
6.18 Same as Figure 6.16 but for late October, 2001 . . . . . . . . . . . . . . . . . . . . . .
6.19 Spatial distribution of the mean SST as measured by a shipborne infrared  
  radiometer and retrieved from NOAA AVHRR data, 10-14 July, 2001 . . . . .
6.20 Comparison of the SST as (a) measured by an IR radiometer on board the  
  NWPI R/V Ecolog and (b) retrieved from NOAA AVHRR . . . . . . . . . . . . .
6.21 Seasonal variability of the SST in the White Sea . . . . . . . . . . . . . . . . . . . . . color
6.22 Seasonal transformations of sea ice fields as revealed from AVHRR images  
  taken in 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color
6.23 Development of tidal/upwelling fronts and eddies of various spatial dimensions  
  as revealed from the AVHHR data obtained in July, 2001 . . . . . . . . . . . . . . color
6.24 Types of mesoscale and synoptic water circulation patterns in the White Sea as  
  revealed by NOAA images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.25 RADARSAT SAR image of the White Sea and the adjacent part of the Barents  
  Sea taken on 28 February, 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.26 RADARSAT SAR imagery of the White Sea and the adjacent part of the  
  Barents Sea (28 February and 4 March, 1998) . . . . . . . . . . . . . . . . . . . . . . .
6.27 ERS-2 SAR image of the White Sea and neighboring regions taken on 12  
  March, 1997 and aerial photography of the whelping rookery, situated in the  
  Gorlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.28 DMSP SSM/I image of the White Sea and adjacent regions taken in March,  
  2000 and 2003. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color
6.29 Results of the validation performed from on board the PINRO flying  
  laboratory Arktika over a zone of whelping rookeries - ice breccia and ice cake color
6.30 RADARSAT SAR image of the White Sea taken on 21 December, 2001 . . . .
6.31 RS-2 SAR image of the White Sea and adjacent regions taken on 4 March, 1999
6.32 RS-2 SAR image of the White Sea and the adjacent regions taken on 20 March,  
  2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

6.33 NOAA-14 AVHRR image of the White Sea and the adjacent regions taken on March 21, 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

6.34 RADARSAT and ERS SAR images of the White Sea and adjacent regions taken in March, 1998 232

6.35 Results of aerial charting of the migration of Greenland seal whelps conducted

in March, 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

6.36 Results of aerial charting of migration of Greenland seal whelps accomplished, on 18 March (a) and 19 March, 2000 (b), respectively. According to these airborne data, the ice conditions during the 1999/2000 winter were favorable for

the reproduction and migration of harp seals. . . . . . . . . . . . . . . . . . . . . . . . color

6.37 The White Sea Basin as partitioned into five regions: 1. Onezhskiy Bay; 2. Dvinskiy Bay; 3. the Bassein; 4 Mezenskiy Bay; and 5. the Voronka................................................................................................................. 236

6.38 The ice concentrations across the White Sea (observed from satellite) in November, 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

6.39 Mean monthly sea ice concentration in the White Sea in January for each year as derived from employed passive microwave satellite data for the period

1987-1999. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

6.40 Same as Figure 6.39 but for the mean monthly sea ice concentration in February of each year for the same time period . . . . . . . . . . . . . . . . . . . . . . color

6.41 Variations in ice concentration in the White Sea during the winters of

1978-1999. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

 

7.1 Distribution of mineral resources in the Murmansk Oblast and the Republic of  
  Karelia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color
7.2 Distribution of mineral resources in the Archangelsk Oblast . . . . . . . . . . . . . color
7.3 Change in the population during the period 1991-2000 and the anticipated  
  demographic development up to 2010 in the White Sea region . . . . . . . . . . .
7.4 Rate of child mortality in the White Sea region during the period 1998-2002.
7.5 The GRP growth index.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6 Electric power production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7 Agricultural production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8 Turnover of the retail trade (billions of rubles for the period 1990-1998, and  
  millions of rubles during 1998-2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9 Per capita turnover of the retail trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10 Volume of commercial services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.11 Mean monthly per capita money income . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.12 Dynamics of the mean per capita real disposable income in Karelia. . . . . . . .
7.13 Fraction of the population in the White Sea region that live below the  
  subsistence level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.14 The GRP as partitioned between different sectors in 2001. . . . . . . . . . . . . . .
7.15 Foreign trade turnover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.16 Unemployment rate for the economically active population . . . . . . . . . . . . .
7.17 Changes in the ownership structure in industry . . . . . . . . . . . . . . . . . . . . . .
7.18 Dynamics of the main ecological indices compared to the GRP. . . . . . . . . . .
7.19 Foreign investments in the White Sea region during the period 1995-1999 . . .
7.20 Investment into fixed capital. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.21 Dynamics of the major environmental indices in comparison with the GRP of  
  the Republic of Karelia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

7.22 Dynamics of the U index reflecting the impact of the Karelian economy on the environment 291

8.1 The three levels of the information system............................................................ 306

8.2 General structure of the information system.......................................................... 307

8.3 Structure of the local information system software.............................................. 308

8.4 Illustration of the GUI.................................................................................................. 309

8.5 Steps required to create digital maps....................................................................... 310

8.6 Structure of a data warehouse.................................................................................... 311

8.7 Illustration of the base Wsea1mdb tables (a fragment)........................................ 312

8.8 Illustration of the base Wsea2mdb tables (a fragment)........................................ 312

8.9 Map of the White Sea region as displayed in the window of the ArcMap module 313

8.10 Nominal GRP in the White Sea region in the 1994-1998 period in current prices 314

8.11 The White Sea region: structure and output of the regional industry in 1999 . 315

8.12 Main stages of data analysis by means of a raster GIS......................................... 317

8.13 Distribution of SST across the White Sea................................................................. 318

8.14 Signal variations inherent in profile 1 of Figure 8.13........................................... 319

8.15 A histogram retrieved from the image displayed in Figure 8.13......................... 319

8.16 Results of classification of the image in Figure 8.13............................................. 320

8.17 Structure of the information system intended for the Internet............................ 321

8.18 The White Sea search system using keywords....................................................... 323

8.19 Operational scheme of the program used to compile the keyword lists............. 324

8.20 Databases accommodated by the system................................................................. 324

8.21 Remote sensing data stored in the information system....................................... 325

8.22 Decision-making support facility based on running the IF ... THEN scenarios 325

8.23 Scenarios considering the nutrient load in the White Sea................................... 326

 

9.1 Index of water contamination in the White Sea in August 1986 . . . . . . . . . . . color

9.2 Monthly indices of water contamination in the White Sea

during 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

9.3 Index of water contamination for the White Sea for the 1984-1989 period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

9.4 Change of water quality in the White Sea for an increase of pollutants average- weighted concentration of 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

9.5 Change of water quality in the White Sea for an increase of pollutant average- weighted concentration of 30% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

 

10.1 Correspondence between the water freezing temperature and the temperature of maximum density for the UNESCO-83 and HYCOM equations of state................................................................................................................................... 343

10.2 Normalized histograms for water depth ranges in the NIERSC-TRANSAS

data set and the smoothed data used in the White Sea HYCOM........................... 344

10.3 Contours of the model mesh and depth. Only every second meshline is shown 345

10.4 The surface circulation in the White Sea and the circulation in the White Sea at

a depth of 100 m.............................................................................................................. 349

10.5 Model experiments on horizontal mixing: WH1 (top), WH4 (middle), WH5 (bottom) with the water salinity varying between 22-280 with a 20 interval . 352


 

10.6 Model experiments on horizontal mixing: WH1 (top), WH7 (middle), WH8 (bottom) with the salinity varying as in Figure 10.5 . 353

10.7 The typical summertime vertical profile of water salinity along the Bassein- Kandalalakshskiy Bay transect 355

10.8 Simulations of the vertical profile of sea temperature along the Bassein- Kandalakshskiy Bay transect in July and February, 1989................................................................................................................................... 356

10.9 Simulations of averaged (over 1989) summertime surface salinity in the White

Sea....................................................................................................................................... 357

10.10 Simulations of averaged (over 1989) summertime circulation patterns of surface waters in the White Sea 358

10.11 Modeled circulation patterns in the White Sea for hybrid layer 5 (at depths of

50-100 m).......................................................................................................................... 361

10.12 Model simulated patterns of currents and surface water salinity in the south- western Gorlo 362

10.13 Simulated circulation of surface water in the White Sea in August and January, 1989 363

10.14 Simulated variability of water temperature and salinity at a station in the Bassein 364

10.15 Simulated mean distribution of seawater temperature in the top 10-m layer for

the summer of 1989......................................................................................................... 365

10.16 The observed mean probability of ice coverage in the White Sea in February

and May............................................................................................................................ 366

10.17 Simulated ice cover extension in the White Sea in 1989 in late February and

early May......................................................................................................................... 367

10.18 The relative sea ice cover extent and the light penetration into the water column without ice cover and with ice cover 370

10.19 Mixed layer depth Mz: simulations vs. observations................................................. 371

10.20 Cone for mixed layer and bottom layer volume calculations.................................. 372

10.21 Ecosystem model for validation............................................................................................... 374

10.22 Content of inorganic nutrients in the mixed layer. . . . . . . . . . . . . . . . . . . . . color

10.23 Development of plankton groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

10.24 Development of detrital forms of nutrients . . . . . . . . . . . . . . . . . . . . . . . . . color

10.25 Development of inorganic nutrients in the lower layer . . . . . . . . . . . . . . . . . color

10.26 Development of inorganic nutrients in the mixed layer . . . . . . . . . . . . . . . . . color

10.27 Development of plankton groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

10.28 Development of detrital forms of nutrients . . . . . . . . . . . . . . . . . . . . . . . . . color

10.29 Development of inorganic nutrients in the lower layer . . . . . . . . . . . . . . . . . color

10.30 Development of inorganic nutrients in the mixed layer . . . . . . . . . . . . . . . . . color

10.31 Development of planktonic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color

10.32 Development of detrital forms of nutrients . . . . . . . . . . . . . . . . . . . . . . . . . color

10.33 Development of inorganic nutrients in the lower layer . . . . . . . . . . . . . . . . . color

10.34 Nutrient flows resulting from a suite of trophic interactions within the model of

the ecosystem.................................................................................................................. 379

10.35 Model integration with the closed model................................................................ 382

10.36 Model integration with losses.................................................................................... 383

10.37 Model integration with a constant level of nutrient input and sedimentation . 383

10.38 Subdivision of the White Sea into water regions 1-8............................................ 387

10.39 Simulated seasonal variations in the concentaation of phosphorus-containing compounds in the selected aquatic reqions (1-8) of the White Sea.................................................................................................................. 398


 

10.40 Simulated seasonal variations of concentrations of nitrogen-containing  
  compounds in aquatic regions (1-8) of the White Sea. . . . . . . . . . . . . . . . . .
10.41 Simulated seasonal variations of concentrations of compounds in aquatic  
  regions (1-8) of the White Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.42 Simulated seasonal variations in the biomass of various hydrobionts in aquatic  
  regions (1-8) of the White Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.43 Modular structure of the coupled hydrodynamic-biogeochemical model. . . . .
10.44 A generalized scheme of biogeochemical fluxes between the variables  
  determining the system state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.45 Modeled variations of sea surface level and salinity at a 30 m depth . . . . . . .
10.46 Modeled distribution of sea surface currents in April, as averaged over  
  1948-2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.47 Modeled distribution of sea bottom currents in April, as averaged over  
  1948-2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.48 Modeled distribution of sea surface currents in August, as averaged over  
  1948-2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.49 Modeled distribution of sea bottom currents in August, as averaged over  
  1948-2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.50 Modeled distribution of sea surface salinity in April, as averaged over  
  1948-2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.51 Modeled distribution of sea surface salinity as averaged over 1948-2000 . . . .
10.52 Modeled distribution of the vertical profile of water salinity along the Gridino-  
  Voronka transect in April and August, as averaged over 1948-2000 . . . . . . .
10.53 Modeled distribution of the vertical profile of seawater temperature along the  
  Gridino-Voronka transect in August, as averaged over 1948-2000. . . . . . . . .
10.54 Distribution of the sea surface temperature in August, as averaged over  
  1948-2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.55 Contours of the M2 tidal amplitude at the sea surface . . . . . . . . . . . . . . . . .
10.56 Distribution of sea surface currents in August 1958 . . . . . . . . . . . . . . . . . . .
10.57 Distribution of sea surface currents in August 1958 . . . . . . . . . . . . . . . . . . .
10.58 Temporal variations of water discharge from the Barents Sea through the Gorlo
10.59 Long-term seasonal dynamics of five-day means of salinity, sea ice thickness,  
  nitrate concentration, and phytoplankton biomass in the control run averaged  
  over the entire White Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.60 Simulated dynamics of ice thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . color
10.61 Simulated dynamics of phytoplankton biomass . . . . . . . . . . . . . . . . . . . . . . color
10.62 Simulated average distribution of the zooplankton biomass at 15m depth . . . color
10.63 Simulated seasonal dynamics of phytoplankton in the major regions of the  
  White Sea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.64 As for Figure 10.63 but for zooplankton . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.65 As for Figure 10.63 but for detritus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.66 As for Figure 10.63 but for ammonium. . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.67 As for Figure 10.63 but for nitrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.68 As for Figure 10.63 but for phosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.69 Five-year averaged (1996-2000) seasonal dynamics of salinity and seawater  
  temperature in the White Sea simulated in the control run and climatic scenario
10.70 Five-year averaged (1996-2000) seasonal dynamics of biomass of the  
  phytoplankton and zooplankton in the White Sea simulated in the control  
  run and the climatic scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

10.71 Five-year averaged (1996-2000) seasonal dynamics of the concentration of dissolved inorganic nitrogen in the White Sea as simulated in the control run, climatic scenario, and anthropogenic impact scenario (3) 439

10.72 Five-year averaged (1996-2000) seasonal dynamics of the concentration of dissolved inorganic phosphorus in the White Sea as simulated in the control

run, climatic scenario, and anthropogenic impact scenario................................. 439


 

 

Tables

 

1.1 Area and population of units in the White Sea watershed . . . . . . . . . . . . . . . 5

 

2.1 River catchments in the White Sea region..................................................................... 18

2.2 Amount of pollutants brought into the White Sea annually...................................... 21

2.1 River catchment areas in the White Sea region.......................................................... 26

2.4 Basic hydrometeorological variables from the GON (river lowest stations) within the White Sea Basin 32

2.5 Dissolved oxygen, nitrogen, and phosphor-containing compounds in the rivers flowing into the White Sea 33

2.6 Prevailing pollutants identified at the lowest stations on the rivers flowing into

the White Sea basin.......................................................................................................... 37

2.7 Ranges in mean annual amounts of chemical substances in river runoff for the catchment area within the Murmansk region 40

2.8 Ranges in mean annual amounts of chemical substances in the river runoff in

the Republic of Karelia.................................................................................................... 41

2.9 Ranges in mean annual amounts of chemical substances in river runoff in the Archangelsk region 43

2.10 Seasonable variability of nitrogen and phosphorus-containing compounds in

the river outlets into the White Sea.............................................................................. 45

2.11 Quantitative assessment of the spatial variability of the runoff module of most abundant pollutants: coastal zone of the White Sea 48

2.12 Anthropogenically-altered natural background for the major pollutants in

river outlets of the White Sea basin.............................................................................. 50

 

3.1 Mean wind directions for the White Sea region over the 50oN-70oN latitudinal

zone during the period 1951-2000................................................................................... 57

3.2 Mean monthly and annual wind velocities.................................................................... 58

3.3 Mean monthly and annual air temperature.................................................................. 60

3.4 Statistical characteristics of the surface water temperature (mean daily data) at

some stations........................................................................................................................... 63


 

3.5 Mean annual and maximum daily rates of precipitation at some stations in the White Sea 66

3.6 Mean monthly precipitation over the west coast of the White Sea...................... 66

3.7 Observed and modeled changes in the mean annual air temperature and water balance elements within the WSC 70

3.8 The mean annual water income from the WSC....................................................... 71

4.1 Monthly mean values of variables characterizing the light climate and water temperature in the White Sea 74

4.2 Observed mean monthly and annual freshwater inflow into the White Sea . . . 86

4.3 Main characteristics of the mean annual water surface temperature in the White

Sea....................................................................................................................................... 88

4.4 Linear trend of sea level variations at various stations in the White Sea, and the contribution of different mechanisms to the trend 122

4.5 Mean and maximal heights and periods of negative surges (numerator) and positive surges (denominator) in various regions of the White Sea.................................................................................................................. 137

6.1 Results of the NASA OC4 algorithm application for retrieving the concentrations of chl in case I and II waters (numerical experiments)............................................................................................... 184

6.2 The architecture and respective retrieval errors for a set of built up NNs.......... 188

6.3 Improvement of the CPA retrieval accuracy due to a sequential use of a

rough NN in combinations with specialized NNs.......................................... 191

6.4 Improvement of the tool performance in comparison with the facility of the L-

M procedure per se........................................................................................................ 191

6.5 Admissible errors in the retrieval of chl in case II waters................................... 191

6.6 Concentration ranges for sm and doc given a 10% uniform ,\-independentnoise 192

6.7 Concentration ranges for sm and doc, given a 15% uniform and ,\-independent

noise................................................................................................................................. 192

6.8 Concentration ranges for sm and doc, given a 10% uniform ,\-dependentnoise 192

6.9 Concentration ranges for sm and doc, given a 15% uniform and ,\-dependent

noise................................................................................................................................. 193

6.10 Concentration ranges for sm and doc, given a 15% normal and ,\-independent

noise................................................................................................................................. 193

6.11 Results of in situ measurements in Onezhskiy Bay, July 2001, surface layer . . 195

6.12 A comparison of water quality variables retrieved for Onezhskiy Bay with the SeaDAS code and the advanced bio-optical algorithm (July, 2001) with respective in situ data................................................ 200

6.13 The comparative characteristics of satellite sensors.............................................. 225

6.14 A summary of trend analyses of changes in the ice concentration in the White

Sea..................................................................................................................................... 236

7.1 Estimates of resources of some minerals in the Murmansk Oblast...................... 242

7.2 State Forest Fund of the Russian Federation and north-western Russia as of

1 January,1998................................................................................................................. 245

7.3 Timber resources of the White Sea regions as assessed in 1993 and 1998............ 245

7.4 Distribution of forests by vegetative zones in the White Sea region................... 245

7.5 Forest classification in the White Sea region performed in 1993........................ 246


Tables xxxiii

7.6 Volumes of standing timber distributed by main tree species in the White Sea region as assessed in 1993 247

7.7 Partitioning of the forested area by tree age in the White Sea region as assessed

in 1998.............................................................................................................................. 248

7.8 Demography of the White Sea region on 1 Jan, 2003............................................ 249

7.9 Change in population of the White Sea region during the 1991-1999 period. . 250

7.10 Forecast population in the White Sea region in 2000-2010.................................. 251

7.11 Growth of the population in the White Sea region during 1997-2002................ 252

7.12 Net migration of the populace in the White Sea region during 1993-2002 . . . 253

7.13 Life expectancy in the White Sea region during 1990-2002.................................. 254

7.14 Distribution of the population in north-western Russia among various sectors

of the economy............................................................................................................... 256

7.15 Enterprises in different sectors of the economy as of 1 January, 2003................. 258

7.16 Indicators of the privatisation process...................................................................... 258

7.17 Small enterprises in different sectors of the regional economy as of January 1, 2003 259

7.18 Nominal GRP during the 1994-2001 period............................................................. 259

7.19 Mean annual RUR/USD Exchange Rates................................................................... 259

7.20 Volumes of industrial production.............................................................................. 261

7.21 Per capita volumes of industrial production........................................................... 261

7.22 Industrial production as partitioned between different branches in 2002........... 262

7.23 Sawn-timber resources.................................................................................................. 263

7.24 Roundwood production................................................................................................ 263

7.25 Paper production............................................................................................................ 264

7.26 Walling material production....................................................................................... 264

7.27 Production of other products...................................................................................... 266

7.28 Change of the industrial production during 1990-2002......................................... 268

7.29 Mean monthly implicit wages (in thousand rubles per employee in the period

1990-1998, and in rubles during 1998-2002).............................................................. 271

7.30 Population with the income below the subsistence level..................................... 273

7.31 Main features of the largest industrial enterprises in northwestern Russia in 2002 274

7.32 Timber harvesting volumes during 1992-1997........................................................ 276

7.33 Volumes of forestry industry production................................................................ 276

7.34 Structure of the regional export............................................................


Date: 2016-03-03; view: 560


<== previous page | next page ==>
Its Marine Environment and Ecosystem Dynamics Influenced by Global Change | Geography of the White Sea and its watershed
doclecture.net - lectures - 2014-2024 year. Copyright infringement or personal data (0.048 sec.)