Home Random Page



Skylab Space Station

In 1973 and 1974 the Skylab space station supported three crews of three astronauts each for periods of up to 84 days. Command and service modules like the ones used for the Apollo program carried astronauts to Skylab and docked with the station. Skylab was more hospitable than previous spacecraft—it was as large as a small two-bedroom house, contained extensive sanitary facilities, and usually maintained a constant temperature in the interior. Skylab astronauts were able to perform many scientific experiments in this environment. Many medical and biological experiments on the effects of weightlessness took place in the orbital laboratory, and astronauts studied the earth and the sun with the telescope and infrared spectrometer. Solar panels provided the electricity needed to run the station.

Skylab’s mission almost ended with its launch in May 1973. A design flaw caused the station’s meteoroid shield to be torn off during launch, severing one of two winglike solar panels that were to convert sunlight to electricity for the space station. Mission controllers quickly went to work on a rescue plan that could be carried out by the first team of Skylab astronauts—Pete Conrad, Joe Kerwin, and Paul Weitz. After reaching the station in late May aboard an Apollo spacecraft, Conrad’s crew installed a sunshield to cool the soaring temperatures inside the station. In a spacewalk repair effort, Conrad and Kerwin restored the necessary electric power by freeing the remaining solar wing, which had failed to deploy properly. The astronauts also conducted medical tests, made observations of the Sun and Earth, and performed a variety of experiments. Their 28-day mission broke the endurance record set by the Salyut 1 crew two years before. Two more teams of astronauts reached Skylab in 1973, logging 56 and 84 days in space, respectively. The three Skylab missions gave U.S. researchers valuable information on human response to long-duration spaceflight.

Skylab was not designed to be resupplied, and by the late 1970s its orbit had decayed badly. Friction with gas molecules in the outer atmosphere had caused the spacecraft to lose altitude and speed, and controllers calculated that it would fall out of orbit by the end of the decade. Tentative plans to use the space shuttle to boost the station into a stable orbit did not come to pass—the shuttle was still in development when Skylab met its fiery end, breaking up during reentry in July 1979. Debris from Skylab landed in the Indian Ocean and in remote areas of Australia.

F7   Mir Space Station

In 1986 the USSR launched the core of the first space station to be composed of distinct units, or modules. This modular space station was named Mir (Peace). Over the next ten years additional modules were launched and added to the station. The first of these, called Kvant, contained telescopes for astronomical observations and reached the station in April 1987. Another module, called Krystal, was devoted to experiments in processing materials in zero gravity. In 1996 Prioda, the last module, was added, bringing Mir’s total habitable volume to about 380 cubic meters (about 13,600 cubic feet).

Cosmonauts lived aboard Mir even longer than their Salyut predecessors lived in space. In 1987 and 1988 Mir cosmonauts Vladimir Titov and Musa Manarov achieved the first yearlong mission. In 1995 physician-cosmonaut Valeriy Polyakov completed a record 14 months aboard the station. Such long-duration missions helped researchers understand the problems posed by lengthy stays in space—information vital to planning for piloted interplanetary voyages.

Beginning in 1995 Mir was the scene of joint U.S.-Russian missions. (Russia took over the Soviet space program after the collapse of the USSR in 1991.) The joint missions paved the way for the International Space Station (ISS; discussed below). U.S. space shuttles docked with Mir nine times, and seven U.S. astronauts lived aboard Mir for extended periods. One of them, Shannon Lucid, set the U.S. spaceflight endurance record of 188 days in 1996.

By 1997 the 11-year-old Mir was experiencing a series of calamities that included computer failures, an onboard fire, and a collision with an unpiloted Progress spacecraft during a rendezvous exercise. Subsequent repair missions returned the station to a relatively normal level of functioning. The Russian Space Agency planned to abandon Mir and cause it to reenter Earth’s atmosphere in the summer of 2000, but the station was temporarily rescued by a private company called Mircorp. Mircorp planned to turn the station into a commercial venture. The company funded a mission in April 2000 that sent two cosmonauts to Mir to make repairs and conduct experiments, but it could not attract enough investors to keep Mir in orbit. Russian ground controllers sent the station plunging into a remote area of the South Pacific Ocean in March 2001.

F8   International Space Station

One of NASA’s most cherished goals was to build a permanent, Earth-orbiting space station. Although it received approval from President Ronald Reagan in 1984, the space station project (designated Space Station Freedom) faced huge political and budgetary hurdles. In 1993, after several redesign efforts by NASA, the station was reshaped into an international venture and redesignated the International Space Station (ISS). In addition to the United States, many other nations have joined the project. Russia, Japan, Canada, and the European Space Agency have produced hardware for the station.

Launch of the first ISS element, a Russian-built module called Zarya, occurred in November 1998. Zarya provides the power and propulsion needed during the ISS’s assembly. Once the ISS is complete, Zarya will be used mostly for storage. The Unity module, built by the United States, was launched in December 1998. Unity acts as a passage from Zarya to other parts of the station. The first habitable part of the ISS—the Russian-made Zvezda service module—was launched in July 2000, and the first long-term crew arrived in November 2000. Planned for completion in 2006, the ISS is designed to be continuously occupied by up to seven crew members. It is envisioned as a world-class research facility, where scientists can study Earth and the heavens, as well as explore the medical effects of long-duration spaceflight, the behavior of materials in a weightless environment, and the practicality of space manufacturing techniques.

F9   Space Shuttles

Even before the Apollo Moon landings, NASA’s long-term plans included a reusable space shuttle to ferry astronauts and cargo to and from an Earth-orbiting space station. Agency planners had hoped to pursue both the station and the shuttle during the 1970s, but in 1972 Congress approved funding only for the shuttle. With the orbiting space station on hold, NASA had to reevaluate the role of the shuttle. The agency came to envision the shuttle both as a “space truck” that could deploy and retrieve satellites and as a platform for scientific observations and experiments in space.

Date: 2015-04-20; view: 260

<== previous page | next page ==>
Apollo Command and Service Module | Space-Shuttle Orbiter
doclecture.net - lectures - 2014-2017 year. (0.006 sec.)